
z/OS

C/C++
Compiler and Run-Time Migration Guide

SC09-4763-00

���

z/OS

C/C++
Compiler and Run-Time Migration Guide

SC09-4763-00

���

Note!
Before using this information and the product it supports, be sure to read the information in “Notices” on page 81.

First Edition (March 2001)

This edition applies to Version 1 Release 1 Modification 0 of z/OS C/C++ (5694-A01) and to all subsequent releases
and modifications until otherwise indicated in new editions. This edition replaces SC09-2359-05. Make sure that you
use the correct edition for the level of the program listed above. Also, ensure that you apply all necessary PTFs for
the program.

Technical changes in the text since the last release of this book are indicated by a vertical line (|) to the left of the
change.

Order publications through your IBM representative or the IBM branch office serving your location. Publications are
not stocked at the address below. You can also browse the books on the World Wide Web by clicking on ″The
Library″ link on the z/OS home page. The web address for this page is
http://www.ibm.com/servers/eserver/zseries/zos/bkserv

IBM welcomes your comments. You can send your comments in any one of the following methods:
v Electronically to the network ID listed below. Be sure to include your entire network address if you want a reply.

Internet: torrcf@ca.ibm.com
IBMLink: toribm(torrcf)

v By FAX, use the following number:

United States and Canada: (416) 448-6161
Other countries: (+1) 416-448-6161

v By mail, to the following address:

IBM Canada Ltd. Laboratory
Information Development
2G/KB7/1150/TOR
1150 Eglinton Avenue East
Toronto, Ontario, Canada M3C 1H7

If you send comments, include the title and order number of this book, and the page number or topic related to your
comment. When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Part 1. Introduction . 1

Chapter 1. Locating your Migration Path 3
How This Book Is Organized . 3
A History of Compilers and Libraries 4

Chapter 2. Common Questions about Migration 7
Will Existing Language Environment Applications Run with z/OS Language

Environment V1R1?. 7
Will Existing C/370 Applications Work with z/OS Language Environment V1R1? 7
My Application Does Not Run — Now What? 8
I Attempt to Recompile My Application and It Fails — Why? 9

Part 2. From C/370 to z/OS V1R1 C/C++ . 11

Chapter 3. Application Executable Program Compatibility 13
Input and Output Operations . 13
Differences Between the C/370 V1 and V2 Compilers 13
Executable Programs That Invoke Debug Tool or dbx. 13
System Programming C Facility (SPC) Executable Programs 13
Executable Programs with Interlanguage Calls 14
Initialization Compatibility . 15

IBM C/370 Version 1 and Version 2 Initialization. 15
z/OS Language Environment Initialization 15
z/OS Language Environment Initialization of C/370 Executable Programs 15
Special Considerations: CEEBLIIA and IBMBLIIA 15

Converting Old Executable Programs to New Executable Programs 16
Considerations for Interlanguage Call (ILC) Applications 17

Chapter 4. Source Program Compatibility 19
Input and Output Operations . 19
Differences Between the C/370 V1 and V2 Compilers 19
SIGFPE Exceptions . 19
Program Mask Manipulations. 20
The release() Function . 20
The realloc() Function . 21
Fetched Main Programs . 21
User Exits. 21
#line Directive . 21
sizeof Operator . 21
System Programming C Applications Built with EDCXSTRX 22
The __librel() Function . 22
Library Messages . 22
Prefix of perror() and strerror() Messages 22
Compiler Messages and Return Codes 22
_Packed Structures and Unions. 23
Alternate Code Points . 23

Chapter 5. C/370 V1 to C/370 V2 Compiler Changes 25
Source Code Incompatibilities 25

Characters . 25
The #pragma comment Directive 25

© Copyright IBM Corp. 1996, 2001 iii

Structure Declarations . 25
Function Argument Compatibility 26
Pointer Considerations . 26
Macro Changes . 27

Chapter 6. Other Migration Considerations 29
Changes That Affect User JCL, CLISTs, and EXECs 29

Return Codes and Messages 29
Changes in Data Set Names 29
Differences in Standard Streams 29
Passing Command-Line Parameters to a Program 30
SYSMSGS ddname . 30

Run-Time Options . 30
Ending the Run-Time Options List 30
ISASIZE, ISAINC, STAE/SPIE, LANGUAGE, and REPORT options 30
STACK Default Size . 30
STACK parameters . 31
HEAP Default Size . 31
HEAP Parameters. 31

Compile-Time Options . 31
DECK Compile-Time Option 31
INLINE Compile-Time Option. 31
OPTIMIZE Compile-Time Option 32
SEARCH and LSEARCH Compile-Time Option 32
TEST Compile-Time Option 32

Language Environment Run-Time Options 32
Precedence of Language Environment over C/370 for #pragma runopts 32
System Programming C Facility Applications with #pragma runopts 32
Decimal Exceptions . 32

Migration and Coexistence Considerations. 33
SIGTERM, SIGINT, SIGUSR1, and SIGUSR2 Exceptions 33
Running Different Versions of the Libraries under CICS 33
CICS Abend Codes and Messages 33
CICS Reason Codes. 33
Standard Stream Support under CICS 34
stderr Output under CICS . 34
Transient Data Queue Names under CICS. 34
HEAP Option Used with the Interface to CICS 34
COBOL Library Routines . 35
Passing Control to the Cross System Product 35
Syntax for the CC Command. 36
atexit List during abort() . 36
Time Functions . 36
Direction of Compiler Messages to stderr 36
Compiler Listings . 37

Chapter 7. Input and Output Operations Compatibility 39
Opening Files . 39
Writing to Files . 39
Repositioning within Files . 41
Closing and Reopening ASA Files 42
fldata() Return Values . 43
Error Handling . 43
Miscellaneous . 44
VSAM I/O Changes . 44
Terminal I/O Changes . 44

iv z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

Part 3. From Pre-OS/390 Releases of C/C++ to z/OS V1R1 C/C++ 47

Chapter 8. Application Executable Program Compatibility 49
Input and Output Operations . 49
System Programming C Facility (SPC) Executable Programs 49
Using the LINK Macro to Initiate a main() 49
Inheritance of Run-Time Options with EXEC CICS LINK. 50
STAE/NOSPIE and SPIE/NOSTAE Mapping 50
Class Library Execution Incompatibilities 50

Chapter 9. Source Program Compatibility 51
Input and Output Operations . 51
SIGFPE Exceptions . 51
Program Mask Manipulations. 51
#line Directive . 52
sizeof Operator . 52
_Packed Structures and Unions. 53
Alternate Code Points . 53
Supporting the ANSI standard 53
LANGLVL(ANSI) . 53
Compiler Messages and Return Codes 53
Collection Class Library Source Code Incompatibilities 53
DSECT Utility . 54

Chapter 10. Other Migration Considerations 55
Class Library Object Module Incompatibilities. 55
Removal of Database Access Class Library Utility 55
Changes That Affect User JCL, CLISTs, and EXECs 55

CXX Parameter in JCL Procedures 55
SYSMSGS and SYSXMSGS ddnames 55
Compiler Messages and Return Codes 55
Changes in Data Set Names 56

Decimal Exceptions . 56
Migration and Coexistence 56

SIGTERM, SIGINT, SIGUSR1, and SIGUSR2 Exceptions 56
Compile-Time Options . 56

OPTIMIZE Compile-Time Option 56
IDL Compile-Time Option . 57
INLINE Compile-Time Option. 57
SEARCH and LSEARCH Compile-Time Option 57
TEST Compile-Time Option 57
HALT Compile-Time Option 57

Syntax for the CC Command. 58
Time Functions . 58
Abnormal Termination Exits . 58
Standard Stream Support . 59
Direction of Compiler Messages to stderr 59
Array new. 59
Compiler Listings . 60

Chapter 11. Input and Output Operations Compatibility 61
Opening Files . 61
Writing to Files . 61
Repositioning within Files . 63
Closing and Reopening ASA Files 64
fldata() Return Values . 65

Contents v

Error Handling . 65
Miscellaneous . 66
VSAM I/O Changes . 66
Terminal I/O Changes . 66

Part 4. From OS/390 C/C++ to z/OS V1R1 C/C++ 69

Chapter 12. Changes Between Releases of OS/390 C/C++ 71
Compiler . 71

Memory Consideration . 71
Removal of Model Tool Support 71
Pragma reachable and leaves 71
Reentrant Variables . 71
Compiler Options . 72

Interprocedural Analysis . 72
IPA Object Module Binary Compatibility 72
IPA Link Step Defaults . 73

Data Types . 73
Floating Point Type to Integer Conversion 73
Long Long Data Type . 74

Language Environment . 74
Name Conflicts with Run-Time Library Functions 74
Time Functions . 76
Direct UCS-2 and UTF-8 Converters 76
Default Option for ABTERMENC Changed to ABEND. 76
THREADSTACK Run-Time Option 76

Class Library . 76
Removal of SOM® Support 76
Removal of Database Access Class Library Utility 76

Part 5. Appendixes. 77

Appendix. Class Library Migration Considerations 79

Notices . 81
Programming Interface Information 82
Trademarks . 82

Bibliography . 85
z/OS. 85
z/OS C/C++ . 85
z/OS Language Environment . 85
Assembler . 85
COBOL . 86
PL/I . 86
VS FORTRAN . 86
CICS . 86
DB2 . 86
IMS/ESA . 87
QMF. 87
DFSMS . 87

INDEX . 89

vi z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

Part 1. Introduction

This part provides answers to some common migration questions.

Note that throughout this book, the short form of a product’s version and release
(VxRx) is used. For example, this book refers to OS/390 Version 2 Release 4
C/C++ as OS/390 V2R4 C/C++. In addition, assume that the modification level of
any referenced product is 0 (zero) unless specifically indicated. For example, this
book refers to AD/Cycle C/370 Version 1 Release 1 Modification 1 as AD/Cycle
C/370 V1R1M1.

© Copyright IBM Corp. 1996, 2001 1

2 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

Chapter 1. Locating your Migration Path

This book discusses the implications of migrating applications from each of the
compilers and libraries listed in Table 2 on page 4 to the z/OS V1R1 C/C++ product.
To find the section of the book that applies to your migration, see “How This Book
Is Organized”.

Use this book to help determine what must be done to continue to use existing
source code, object code, and load modules, and to be aware of differences in
behavior between products that may affect your migration. In most situations,
existing well-written applications can continue to work without modification.

This book does not discuss all of the enhancements that have been made to the
z/OS V1R1 C/C++ compiler and z/OS Language Environment V1R1. This book
does not show how to change an existing C program so that it can use C++. For a
list of books that provide information about the z/OS V1R1 C/C++ compiler and its
class libraries, debugger, and utilities, refer to “Bibliography” on page 85. For a
description of some of the differences between C and C++, see z/OS C/C++
Language Reference.

In this book, references to the products listed in the first column of Table 1 also
apply to the products in the second column.

Table 1. Product References

References To These Products Also Apply To These Products

LE/370 R3 MVS/ESA™ SP V5R1 OpenEdition®,
AD/Cycle® C/370™ Language Support
Feature

Language Environment® R4 C/C++ Language Feature of MVS/ESA SP
V5R2M0

Language Environment R5 C/C++ Language Feature of MVS/ESA SP
V5R2M2

C/MVS™ V3R2 compiler C component of the C/C++ for MVS/ESA
V3R2 compiler

C++/MVS V3R2 compiler C++ component of the C/C++ for MVS/ESA
V3R2 compiler

OS/390 V1R1 IBM® C/C++ for MVS™ V3R2 compiler and
Language Environment R5

How This Book Is Organized
v Part 1 contains some general answers to common migration questions.

v Part 2 describes the considerations for migrating from one of the following:

– The IBM C/370 V1 or V2R1 compiler and the IBM C/370 V1 or V2 library

– The IBM SAA AD/Cycle C/370 V1R2 compiler and the IBM C/370 V2R2 library

v Part 3 describes the considerations for migrating from one of the following
compilers, and any release of z/OS Language Environment:

– The AD/Cycle C/370 compilers

– The MVS C/C++ V3 compilers

– The OS/390 V1R1 C/C++ compiler

© Copyright IBM Corp. 1996, 2001 3

v Part 4 describes the considerations for migrating from one of the following:
– OS/390 V1R2 C/C++
– OS/390 V1R3 C/C++
– OS/390 V2R4 C/C++
– OS/390 V2R5 C/C++
– OS/390 V2R6 C/C++
– OS/390 V2R7 C/C++
– OS/390 V2R8 C/C++
– OS/390 V2R9 C/C++

A History of Compilers and Libraries
Table 2 lists the versions of the C and C++ compilers and run-time libraries in the
order in which they were first released. Use this table to help determine which
changes described in this book apply to your migration.

Table 2. A History of Compilers and Libraries

Short
Name

Product
Number

GA
Date

Description Service
Status

C/370
V1R1

5688-040

5688-039

1988

1988

C/370 V1R1 Compiler

C/370 V1R1 Library

end of service

C/370
V1R2

5688-040

5688-039

1989

1989

C/370 V1R2 Compiler

C/370 V1R2 Library

end of service

C/370
V2R1

5688-187

5688-188

1991

1991

C/370 V2R1 Compiler

C/370 V2R1 Library

AD V1R1 5688-216 1991 AD/Cycle C/370 V1R1 Compiler,
follow-on to C/370 V2R1 Compiler.

end of service

LE V1R1 5688-198 1991 LE/370 V1R1 Library, first release of
Language Environment/370; follow-on
to C/370 V2R1 Library.

end of service

LE V1R2 5688-198 1992 LE/370 V1R2 Library end of service

AD V1R2 5688-216 1994 AD/Cycle C/370 V1R2 Compiler:

v Runs on either LE V1R3 or C/370
V2R2

v Generates code for either LE V1R3
or C/370 V2R2

LE V1R3 5688-198 1994 LE/370 V1R3 Library, also shipped as
part of MVS/ESA SP 5.1 OpenEdition
AD/Cycle C/370 Language Support
Feature.

end of service

C/370
V2R2

5688-188 1994 C/370 V2R2 Library. Follow-on to the
C/370 V2R1 Library, intended to help
customers migrate to LE/370.

C/C++MVS
V3R1

5655-121 1995 C/C++ for MVS/ESA V3R1 Compilers,
follow-on to AD V1R2 Compiler. First
release of C++ on MVS.

end of service

LE V1R4 5688-198 1995 LE V1R4 Library for MVS & VM, also
shipped as the MVS/ESA SP 5.2.0
C/C++ Language Support Feature.

end of service

C/C++/
MVS V3R2

5655-121 1995 C/C++ for MVS/ESA V3R2 Compilers

Introduction

4 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

Table 2. A History of Compilers and Libraries (continued)

Short
Name

Product
Number

GA
Date

Description Service
Status

LE V1R5 5688-198 1995 LE V1R5 Library for MVS & VM, also
shipped as part of MVS/ESA SP 5.2.2
C/C++ Language Support Feature.

OS/390 R1 5645-001 March
1996

OS/390 R1 includes the C/C++ for
MVS/ESA V3R2 Compilers and the
OS/390 V1R1 Language Environment.

end of service
Jan 31, 2001

OS/390 R2 5645-001 Sept
1996

OS/390 R2 C/C++ is the follow-on to
OS/390 R1 C/C++, and includes new
optimization options to improve the
execution-time performance of C code.
OS/390 V1R2 Language Environment
comes with OS/390 V1R2.

end of service
Jan 31, 2001

OS/390 R3 5645-001 March
1997

OS/390 R3 C/C++ is the follow-on to
OS/390 R2 C/C++, and includes new
optimization options to improve the
execution-time performance of C++
code. OS/390 V1R3 Language
Environment comes with OS/390 V1R3.

end of service
Mar 31, 2001

OS/390
V2R4

5647-A01 Sept
1997

OS/390 V2R4 C/C++ is the follow-on to
OS/390 R3 C/C++, and includes
performance improvements for DLLs,
conversion of character string literals,
and support for the Program
Management Binder. OS/390 V2R4
Language Environment comes with
OS/390 V2R4.

end of service
Mar 31, 2001

OS/390
V2R5

5647-A01 March
1998

OS/390 V2R5 C/C++ is functionally
equivalent to OS/390 V2R4 C/C++.

end of service
Mar 31, 2001

OS/390
V2R6

5647-A01 Sept
1998

OS/390 V2R6 C/C++ is the follow-on to
OS/390 V2R4 C/C++. It includes
support for the IEEE binary
floating-point and the long long data
types, improvements to the handling
and format of packed decimal numbers
in C++, and the TARGET(OSV1R2)
suboption. OS/390 V2R6 Language
Environment comes with OS/390 V2R6.

OS/390
V2R7

5647-A01 March
1999

The compiler is functionally equivalent
to the OS/390 V2R6 C/C++ compiler.
OS/390 V2R7 Language Environment
comes with OS/390 V2R7.

OS/390
V2R8

5647-A01 Sept
1999

The compiler is functionally equivalent
to the OS/390 V2R6 C/C++ compiler.
OS/390 V2R8 Language Environment
comes with OS/390 V2R8.

Introduction

Chapter 1. Locating your Migration Path 5

Table 2. A History of Compilers and Libraries (continued)

Short
Name

Product
Number

GA
Date

Description Service
Status

OS/390
V2R9

5647-A01 March
2000

OS/390 V2R9 C/C++ is the follow-on to
OS/390 V2R6 C/C++. It includes the
following new compiler options and
suboptions:
v CHECKOUT(CAST)
v COMPRESS
v CVFT
v DIGRAPH (for C)
v IGNERRNO
v INITAUTO
v IPA(OBJONLY)
v PHASEID
v ROCONST
v ROSTRING
v STRICT
v TARGET suboptions enhancements

It also includes the following #pragma
directives:

v leaves

v option_override

v reachable

OS/390 V2R9 Language Environment
comes with OS/390 V2R9.

OS/390
V2R10

5647-A01 Sept
2000

OS/390 V2R10 C/C++ is the follow-on
to OS/390 V2R9 C/C++. It includes the
following new compiler options and
suboptions:
v COMPACT
v GOFF
v IPA(LEVEL(2))
v XPLINK

and enhancements to the following
compiler options and suboptions:
v SPILL
v TARGET

It also includes improvements to:
v #pragma option_override
v Packed decimal optimization in C

OS/390 V2R10 Language Environment
comes with OS/390 V2R10.

z/OS V1R1 5694-A01 Mar
2001

z/OS V1R1 C/C++ is functionally
equivalent to OS/390 V2R10 C/C++.

Introduction

6 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

|||
|
|
|

Chapter 2. Common Questions about Migration

This chapter describes the kind of migration impacts that you may encounter, and
the possible solutions.

Will Existing Language Environment Applications Run with z/OS
Language Environment V1R1?

Yes, in nearly all situations, an existing, well-behaved Language Environment
application can be run with z/OS Language Environment without any modifications.
A well-behaved application is one that relies on documented interfaces only.

For example, the z/OS C/C++ Run-Time Library Reference states that the remove()
function returns a nonzero return code when a failure occurs. The following code
fragments show the correct and incorrect ways to call the remove() function and to
check the return code:

Incorrect method
if (remove("my.file") == -1) {

call_err();
}

.

.

.

Correct method
if (remove("my2.file") != 0) {

call_err();
}

.

.

.

The value of the return code from the remove() function changed in LE/370 R3. If
an LE/370 R2 program was coded incorrectly, and checked for a specific value, as
in the first code fragment, a source change is required when the code is migrated.
This situation is common when an application relies upon undocumented interfaces.
However, if the program was coded correctly, and it did not check for a specific
nonzero return code, as in the second fragment, no source changes are required.

Will Existing C/370 Applications Work with z/OS Language
Environment V1R1?

A C/370 application is created using the IBM C/370 Version 1 or Version 2 compiler
and library, or the AD/Cycle C/370 V1R2 compiler with the TARGET(COMPAT) option
and the C/370 V2R2 library. A well-behaved C/370 application, in most situations,
works with z/OS Language Environment without any modifications.

Two common migration problems that you may encounter relate to interlanguage
calls:

v You must relink applications that contain interlanguage calls between C/370 and
Fortran before running them with z/OS Language Environment

v You can only run them with z/OS Language Environment after they are relinked.
You cannot continue to run them with the C/370 library.

© Copyright IBM Corp. 1996, 2001 7

The same rules apply to applications that contain interlanguage calls between
C/370 and COBOL, unless you relink them with the C/370 V2R1 or V2R2 library
with the PTF for APAR PN74931 applied. This PTF replaces the C/370 V2 link-edit
stubs so that they tolerate Language Environment. After your application is relinked
using the modified C/370 V2 stubs, you can run the application with either the
C/370 V2 run-time library or with Language Environment. Refer to “Executable
Programs with Interlanguage Calls” on page 14 for more information about COBOL
and Fortran interlanguage calls.

Though there are other migration items (described in the following chapters) that
may affect your application, these are the most serious ones.

My Application Does Not Run — Now What?
If your application does not run, it may be either a migration problem, or an error in
your program that surfaces as a result of a new design feature in the run-time
library. Do the following:

1. Verify the concatenation order of your libraries.

If you have a load module built with both C/370 library parts and z/OS
Language Environment parts, ensure that you are not accidentally initializing
your environment using the C-PL/I Common Library rather than z/OS Language
Environment. The PDS with the low level qualifier SCEERUN (which belongs to
z/OS Language Environment), must be concatenated ahead of the PDS with the
low level qualifier SIBMLINK (which belongs to the C-PL/I Common Library).

Refer to the section “Initialization Compatibility” on page 15 for more information.

2. Use environment variables to obtain the “Old Behavior”.

Under z/OS Language Environment, you can use the ENVAR run-time option to
specify the values of environment variables at execution time. With some
environment variables, you can specify the “old behavior” for particular items.
The following setting provides you with “old behavior” for the greatest number of
items:
ENVAR("_EDC_COMPAT=32767")

The value assigned to _EDC_COMPAT is used as a bit mask. If you assign a value
of 32767, the library uses “old behavior” for all of the general compatibility items
currently defined by _EDC_COMPAT. For more information about _EDC_COMPAT and
its possible values, refer to the z/OS C/C++ Programming Guide.

If _EDC_COMPAT solves your migration problem, you can use it with the ENVAR
run-time option, as shown above, or in a call to setenv() either in the CEEBINT
High-Level Language exit or in your main() program. Using CEEBINT only
requires you to relink your application, but adding a call to setenv() in the
main() function requires a recompile and obviously a relink. See the z/OS
C/C++ Run-Time Library Reference, and the z/OS C/C++ Programming Guide
for more details about the setenv() function.

3. Relink your application.

Relinking your application with z/OS Language Environment ensures that you
did not link in any non-z/OS Language Environment interfaces. You must relink
your C/370 application before running it with z/OS Language Environment, if
your application:

v Contains ILCs between C and Fortran, or between C and COBOL.

Refer to “Executable Programs with Interlanguage Calls” on page 14 for more
information.

Introduction

8 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

v Is an SPC application that uses the library

v Contains calls to ctest()

4. Review the migration items documented in this book.

If you find a migration item in this manual that you think may affect your
application, use the workaround described in this book. If a relink or a setting of
an environment variable is not suggested, you must change your source, and
then recompile and relink your application.

5. Look for uninitialized storage.

In some cases, applications will run with uninitialized storage, because the
run-time library may inadvertently clear storage, or because the storage location
referenced is set to zero.

Use the STORAGE and HEAP run-time options to find uninitialized storage. We
recommend STORAGE(FE,DE,BE) and HEAP(16,16,ANY,FREE) to determine if your
application is coded correctly. Any uninitialized pointers will fail at first reference
instead of accidentally referencing storage locations at random.

Note: Your program will run slower with these options specified. Do not use
them for production, only development.

6. Look for undocumented interfaces.

It is possible that your application has dependencies on undocumented
interfaces. For example, you may have dependencies on library control blocks,
specific errno values, or specific return values. Alter your code to use only
documented interfaces, and then recompile and relink.

7. Contact your service representative.

If you followed steps 1 to 6, but cannot run your existing load module under
z/OS Language Environment, contact your System Programmer to verify
whether or not all service has been applied to your system. Often, the problem
you encounter has already been reported to IBM, and a fix is available. If this is
not the case, ask your Service Representative to open a Problem Management
Record (PMR) against the applicable IBM product. See the APAR member in
data set CBC.SCBCDOC for information on how to open a PMR.

I Attempt to Recompile My Application and It Fails — Why?
Changes were made between versions and releases of compilers. Several changes
were made between C/370 V1 and C/370 V2. In some cases, these changes were
made to ensure compliance with C Language standards such as ANSI/ISO. This
book describes these changes, and the alterations you may need to make to your
code.

The amount of memory required by the compiler sometimes changes from release
to release. If you cannot recompile an application that you successfully compiled
with a previous release of the compiler, try increasing the region size.

Introduction

Chapter 2. Common Questions about Migration 9

10 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

Part 2. From C/370 to z/OS V1R1 C/C++

This part discusses the implications of migrating applications that were created with
one of the following compilers and one of the following libraries to the z/OS V1R1
C/C++ product.

Compilers:

v The IBM C/370 V1 compiler, 5688-040

v The IBM C/370 V2 compiler, 5688-187

v The AD/Cycle C/370 V1R2 compiler with the TARGET(COMPAT) compiler option,
5688-216

Libraries:

v The IBM C/370 V1 library, 5688-039, and C-PL/1 Common Library, 5688-082

v The IBM C/370 V2 library, 5688-188, and C-PL/1 Common Library, 5688-082

In this part, z/OS V1R1 may also be referred to as z/OS Language Environment, or
Language Environment.

© Copyright IBM Corp. 1996, 2001 11

12 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

Chapter 3. Application Executable Program Compatibility

This chapter will help application programmers understand the compatibility
considerations of application executable programs.

An executable program is the output of the prelink/link or bind process. For more
information on the relationship between prelinking, linking, and binding, see the
section About Prelinking, Linking, and Binding in z/OS C/C++ User’s Guide. The
output of this process is a load module when stored in a PDS and a program object
when stored in a PDSE or HFS.

Generally, C/370 executable programs execute successfully with z/OS Language
Environment V1R1 without source code changes, recompilation, or relinking. This
chapter highlights exceptions and shows how to solve specific problems in
compatibility.

Executable program compatibility problems requiring source changes are discussed
in “Chapter 4. Source Program Compatibility” on page 19.

Note: The terms in this section having to do with linking (bind, binding, link,
link-edit) refer to the process of creating an executable program from object
modules.

Input and Output Operations
Programs that ran with the C/370 V1 or V2R1 library may have to be changed to
run with z/OS Language Environment if they have dependencies on any of the input
and output behaviors listed in “Chapter 7. Input and Output Operations
Compatibility” on page 39.

Differences Between the C/370 V1 and V2 Compilers
If you have programs that were created with C/370 V1, you should be aware of
some changes made in C/370 V2 that may affect them. These differences also exist
in the z/OS C compiler. See “Chapter 5. C/370 V1 to C/370 V2 Compiler Changes”
on page 25 for more information.

Executable Programs That Invoke Debug Tool or dbx
When migrating your application from C/370 to z/OS Language Environment V1R1,
you must relink modules that contain calls to ctest(). The old library object,
@@CTEST, must be replaced as described in “Converting Old Executable
Programs to New Executable Programs” on page 16 and in “Considerations for
Interlanguage Call (ILC) Applications” on page 17. After you replace the old objects,
the new modules are executable under z/OS Language Environment.

System Programming C Facility (SPC) Executable Programs
There are two types of SPC programs: the ones that still require the run-time
library, and the ones that do not. With z/OS Language Environment, only the SPC
executable programs that use the z/OS C/C++ run-time library need to be relinked.
You can relink applications from executable programs or from text decks using the
z/OS Language Environment text libraries. If you relink from text decks, you can
use the JCL that originally built the application. However, you must modify it to point

© Copyright IBM Corp. 1996, 2001 13

to the z/OS Language Environment static or resident library (SCEELKED). If you
relink from executable programs, you will need to do a CSECT replacement for the
appropriate part, such as EDCXSTRL, EDCXENVL, and EDCXHOTL.

If your SPC module has been built with exception handling, automatic library call is
not enabled when you relink, so you must explicitly include the new routine
@@SMASK.

Executable Programs with Interlanguage Calls
You must relink C/370 executable programs that contain interlanguage calls (ILCs)
to or from COBOL to execute them under z/OS Language Environment. Old
executable programs that contain ILCs to and from assembler or PL/I language
modules do not need to be relinked.

To relink your C/370-COBOL ILC application under the C/370 V2R2 library so that it
can run under either the C/370 V2R2 library or Language Environment, obtain and
apply PTF for APAR PN74931 for the V2R1 or V1R2 link-edit stubs. This PTF
replaces the link-edit stubs so that they tolerate Language Environment. After your
application is relinked using the modified V2, you can run the application with either
the V2R1 or V2R2 run-time library, or with Language Environment.

To relink your C/370-COBOL ILC application so that it will only run under z/OS
Language Environment, replace the old library objects @@C2CBL and @@CBL2C,
as described in “Converting Old Executable Programs to New Executable
Programs” on page 16 and “Considerations for Interlanguage Call (ILC)
Applications” on page 17. After you replace the old objects, the new modules will be
executable only under z/OS Language Environment.

Fortran-C ILC was not supported prior to Language Environment V1R5 and C/MVS
V3R1, for Language Environment conforming applications. To use Fortran and C
ILC routines, you must relink all Fortran-C ILC applications containing pre-Language
Environment C or Fortran library routines.

The following table outlines when a relink of ILC applications is required, based on
languages found in the executable program:

Table 3. Migrations requiring relinking

Language Relink required

Assembler No

PL/I No

Fortran YES

COBOL YES *

Notes:

1. * If the C/370 ILC application is built (relinked) after the PTF for APAR PN74931
is applied, no relink is required to run under z/OS V1R1 C/C++. Otherwise a
relink is required.

2. If you have multiple languages in the executable program, then the sum of the
restrictions applies. For example: if you have C, PL/I and Fortran in the
executable program, then it should be relinked because Fortran needs to be
relinked.

From C/370 to z/OS V1R1

14 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

Refer to z/OS Language Environment Writing Interlanguage Applications for more
information.

Initialization Compatibility
Both z/OS Language Environment V1R1 and C/370 modules use static code and
dynamic code. Static code sections are emitted or bound with the main program
object. Dynamic code sections are loaded and executed by the static component.

The sequence of events during initialization for C/370 modules differs from that for
z/OS Language Environment V1R1 modules. The key static code for both C/370
and z/OS Language Environment modules is an object named CEESTART, which
controls initialization at execution. Its contents differ between the products, thus
there is an old and a new version of CEESTART. The key dynamic code for z/OS
Language Environment is CEEBINIT, which is stored in SCEERUN. The key
dynamic code for IBM C/370 Version 1 and Version 2 is IBMBLIIA, which is a
Common Library part stored in SIBMLINK. The Common Library is used by the
C/370 V1 and V2 libraries.

The following lists describe the initialization schemes:

IBM C/370 Version 1 and Version 2 Initialization
1. Old CEESTART loads IBMBLIIA.

2. IBMBLIIA initializes the Common Library.

3. The Common Library runs C/370-specific initialization.

4. The main program is called.

z/OS Language Environment Initialization
1. The new CEESTART loads CEEBINIT.

2. CEEBINIT initializes z/OS Language Environment.

3. z/OS Language Environment C-specific initialization is run.

4. The main program is called.

z/OS Language Environment Initialization of C/370 Executable
Programs

1. Old CEESTART loads CEEBLIIA (as IBMBLIIA).

2. CEEBLIIA (IBMBLIIA) initializes z/OS Language Environment.

3. z/OS Language Environment C-specific initialization is run.

4. The main program is called.

In the third situation listed above, compatibility with old executable programs
depends upon the program’s ability to intercept the initialization sequence at the
start of the dynamic code and to perform the z/OS Language Environment
initialization at that point. This interception is done by providing a part named
CEEBLIIA, assigned the alias of IBMBLIIA. This provides “initialization
compatibility”.

Special Considerations: CEEBLIIA and IBMBLIIA
The only way to control which environment is initialized for a given old executable
program (when CEEBLIIA is assigned the alias of IBMBLIIA) is to correctly arrange
the concatenation of libraries.

From C/370 to z/OS V1R1

Chapter 3. Application Executable Program Compatibility 15

To initialize the Common Library environment, ensure that SIBMLINK is
concatenated before SCEERUN. To initialize the z/OS Language Environment
environment, ensure that SCEERUN is concatenated before SIBMLINK. The
version of IBMBLIIA that is found first determines the environment (Language
Environment or Common Library) that is initialized.

Converting Old Executable Programs to New Executable Programs
Many sites will have some old executable programs that will require the C/370
Common Library environment unless they have been converted to use z/OS
Language Environment. These are incompatible modules that, for example, contain
ILCs to COBOL or that use the library function ctest() to invoke the Debug tool.

There are three different methods of converting old modules to new modules, so
that they will run under z/OS Language Environment:

v Link from original objects using z/OS Language Environment. EDCSTART and
CEEROOTB must be explicitly included.

v Relink the old executable program with z/OS Language Environment using
CSECT replacement. EDCSTART and CEEROOTB must be explicitly included.

Figure 1 shows an example of a job that uses this method. The job converts an
old executable program to a new executable program by relinking it and explicitly
including the z/OS Language Environment CEESTART to replace the old C/370
CEESTART.

This is a general-purpose job. The comments show the other include statements
that are necessary if certain calls are present in the code. Refer to
“Considerations for Interlanguage Call (ILC) Applications” on page 17 for the
specific control statements that are necessary for different kinds of ILCs with
COBOL.

v For those modules that have a C main(), replace the old executable program by
recompiling the source (if available). Recompile the source containing the main()
function with the z/OS V1R1 C/C++ compiler, and then relink the objects with

//Jobcard information
//*
//**//
//*RELINK C/370 V1 or V2 USER MODULE FOR Language Environment *//
//**//
//*
//*
//LINK EXEC PGM=HEWL,PARM='RMODE=ANY,AMODE=31,MAP,LIST'
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR
//SYSLMOD DD DSN=TSUSER1.A.LOAD,DISP=SHR
//SYSUT1 DD UNIT=VIO,SPACE=(CYL,(10,10))
//SYSLIN DD *

INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED
INCLUDE SYSLIB(@@CTEST) NEEDED ONLY IF CTEST CALLS ARE PRESENT
INCLUDE SYSLIB(@@C2CBL) NEEDED ONLY IF CALLS ARE MADE TO COBOL
INCLUDE SYSLIB(@@CBL2C) NEEDED ONLY IF CALLS ARE MADE FROM COBOL
INCLUDE SYSLMOD(HELLO)
ENTRY CEESTART
NAME HELLO(R)

/*

Figure 1. Link Job for Converting Executable Programs

From C/370 to z/OS V1R1

16 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

z/OS Language Environment. This creates a version of CEESTART for z/OS
Language Environment. This is an alternative to explicitly including EDCSTART
when linking from objects.

Considerations for Interlanguage Call (ILC) Applications
This section lists the linkage editor control statements required to relink modules
that contain ILCs between C and COBOL, and C and Fortran. The object modules
are compatible with the z/OS Language Environment; however, the ILC linkage
between the applications and the library has changed. You must relink these
applications using the JCL shown in Figure 1 on page 16 and the control statements
that fit your requirements from the following list. The INCLUDE SYSLIB(@@CTDLI) is
only necessary if your program will invoke IMS™ facilities using the z/OS C library
function ctdli() and if the z/OS C function was called from a COBOL main
program.

Control statements for various combinations of ILCs and compiler options are as
follows. The modules referenced by SYSLMOD contain the routines to be relinked.

1. C main() statically calling COBOL routine B1 or dynamically calling the COBOL
routine through the use of fetch(), where B1 was compiled with the RES option.
Relink the C module:

MODE AMODE(31),RMODE(ANY)
INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED
INCLUDE SYSLIB(@@C2CBL) REQUIRED FOR C CALLING COBOL
INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS
INCLUDE SYSLMOD(SAMP1)
ENTRY CEESTART MAIN ENTRY POINT
NAME SAMP1(R)

2. C main() statically calling COBOL routine B2 or dynamically calling the COBOL
routine through the use of fetch(), where B2 was compiled with the NORES
option. Relink the C module:

MODE AMODE(24),RMODE(24)
INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED
INCLUDE SYSLIB(@@C2CBL) REQUIRED FOR C CALLING COBOL
INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS
INCLUDE SYSLIB(IGZENRI) REQUIRED FOR COBOL with NORES
INCLUDE SYSLMOD(SAMP2)
ENTRY CEESTART MAIN ENTRY POINT
NAME SAMP2(R)

3. C main() fetches a C1 function that statically calls a COBOL routine B1
compiled with the RES option. Relink the C module:

MODE AMODE(31),RMODE(ANY)
INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED
INCLUDE SYSLIB(@@C2CBL) REQUIRED FOR C CALLING COBOL
INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS
INCLUDE SYSLMOD(SAMP3)
ENTRY C1 ENTRY POINT TO FETCHED ROUTINE
NAME SAMP3(R)

4. C main() fetches a C1 function that statically calls a COBOL routine B1 that is
compiled with the NORES option. Relink the C module:

MODE AMODE(24),RMODE(24)
INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED
INCLUDE SYSLIB(@@C2CBL) REQUIRED FOR C CALLING COBOL
INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS

From C/370 to z/OS V1R1

Chapter 3. Application Executable Program Compatibility 17

INCLUDE SYSLIB(IGZENRI) REQUIRED FOR COBOL with NORES
INCLUDE SYSLMOD(SAMP4)
ENTRY C1 ENTRY POINT TO FETCHED ROUTINE
NAME SAMP4(R)

5. A COBOL main CBLMAIN compiled with the RES option statically or
dynamically calls a C1 function. Relink the COBOL module:

MODE AMODE(31),RMODE(ANY)
INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED
INCLUDE SYSLIB(IGZEBST)
INCLUDE SYSLIB(@@CBL2C) REQUIRED FOR COBOL CALLING C
INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS
INCLUDE SYSLMOD(SAMP5)
ENTRY CBLRTN COBOL ENTRY POINT
NAME SAMP5(R)

6. A COBOL main CBLMAIN compiled with the NORES option statically or
dynamically calls a C1 function. Relink the COBOL module:

MODE AMODE(24),RMODE(24)
INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED
INCLUDE SYSLIB(IGZENRI)
INCLUDE SYSLIB(@@CBL2C) REQUIRED FOR COBOL CALLING C
INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS
INCLUDE SYSLMOD(SAMP6)
ENTRY CBLRTN COBOL ENTRY POINT
NAME SAMP6(R)

7. C main() calls a Fortran routine. Relink the C module:
INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED
INCLUDE SYSLIB(@@CTOF) REQUIRED FOR C CALLING Fortran
INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS
INCLUDE SYSLMOD(SAMP7)
ENTRY CEESTART MAIN ENTRY POINT
NAME SAMP7(R)

8. A Fortran main() calls a C function. Relink the C module:
INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED
INCLUDE SYSLIB(@@FTOC) REQUIRED FOR Fortran CALLING C
INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS
INCLUDE SYSLMOD(SAMP8)
ENTRY CEESTART MAIN ENTRY POINT
NAME SAMP8(R)

For other related Fortran considerations, refer to z/OS Language Environment
Programming Guide.

From C/370 to z/OS V1R1

18 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

Chapter 4. Source Program Compatibility

This chapter describes the changes that you may have to make to your source
code when moving applications to the z/OS V1R1 C/C++ product.

It considers programs created with one of the following compilers and one of the
following libraries.

Compilers:

v The IBM C/370 V1 compiler, 5688-040

v The IBM C/370 V2 compiler, 5688-187

v The AD/Cycle C/370 V1R2 compiler with the TARGET(COMPAT) compiler option,
5688-216

Libraries:

v The IBM C/370 V1 library, 5688-039, and C-PL/1 Common Library, 5688-082

v The IBM C/370 V2 library, 5688-188, and C-PL/1 Common Library, 5688-082

C/370 V1 modules were created with the C/370 V1 library. C/370 V2 modules were
created with the C/370 V2 library.

“Chapter 6. Other Migration Considerations” on page 29 has information on run-time
options, which may also affect source code compatibility.

Input and Output Operations
You may have to change programs running with the C/370 V1 or V2R1 library if
they have dependencies on any of the input and output behaviors listed in
“Chapter 11. Input and Output Operations Compatibility” on page 61.

Differences Between the C/370 V1 and V2 Compilers
If you have programs that were created with the C/370 V1 compiler, you should be
aware of some changes made in C/370 V2 that may affect your programs. These
differences are also in the z/OS C compiler. See “Chapter 5. C/370 V1 to C/370 V2
Compiler Changes” on page 25 for more information.

SIGFPE Exceptions
Decimal overflow conditions were masked in the C/370 library before V2R2. The
conditions were enabled when the packed decimal data type was introduced in the
AD/Cycle C/370 V1R2 compiler, and continue to be enabled with z/OS Language
Environment V1R1. If you have old load modules (created with the C/370 V1 or
V2R1 library) that accidentally generated decimal overflow conditions, they may
behave differently with z/OS Language Environment, by raising unexpected SIGFPE
exceptions. You cannot migrate such modules to the new library without altering the
source, and they are unsupported.

It is unlikely that such modules are present in a C-only environment. These
unexpected exceptions may occur in mixed language modules, particularly those
using C and assembler code where the assembler code explicitly manipulates the
program mask.

© Copyright IBM Corp. 1996, 2001 19

Program Mask Manipulations
Programs created with the C/370 V1 or V2R1 compiler and library that explicitly
manipulated the program mask may require source alteration to execute correctly
under z/OS Language Environment. Changes are required if you have one of the
following types of programs:

v A C program containing interlanguage calls (ILCs), where the invoked code uses
the S/370™ decimal instructions that might generate an unmasked decimal
overflow condition, requires modification for migration. There are two methods for
migrating the code. The first one is preferred:

– If the called routine is assembler, save the existing mask, set the new value,
and when finished restore the saved mask.

– Change the C code so that the produced SIGFPE signal is ignored in the called
code. In the following example, the SIGNAL calls surround the
overflow-producing code. The SIGFPE exception signal is ignored, and then
reenabled:

signal(SIGFPE, SIG_IGN); /* ignore exceptions */
...
callit(): /* in called routine */
...
signal(SIGFPE, SIG_DFL); /* restore default handling */

v A C program containing assembler ILCs that explicitly alter the program mask,
and do not explicitly save and restore it, also requires modification for migration.

If user code explicitly alters the state of the program mask, the value before
modification must be saved, and the value restored to its former value after the
modification. You must ensure that the decimal overflow program mask bit is
enabled during the execution of C code. Failure to preserve the mask may result
in unpredictable behavior.

These changes also apply in a System Programming C environment, and to
Customer Information Control System (CICS) programs in the handling and
management of the PSW mask.

The release() Function
With the z/OS C compiler and z/OS Language Environment, you can no longer
issue a release() call against a fetched COBOL, Fortran, or PL/I module. If you do,
release() returns a nonzero return code. You can still use release() with C
modules and non-z/OS Language Environment enabled assembler modules.

If your application fetches and releases PL/I, Fortran, or COBOL modules, you must
change your source code, then recompile and link it with z/OS Language
Environment, if you are dependent on the release() return code.

Although release() could be issued against any assembler routines with IBM C/370
Version 1 and Version 2, it cannot be issued against z/OS Language
Environment-enabled assembler routines. These routines, known as ASM15
routines, are assembled with z/OS Language Environment assembler prologs.
ASM15 routines are coded with the CEEENTRY macro. If any assembler routines
are rewritten as ASM15 routines, ensure that the calling code does not issue a
release() call against them.

From C/370 to z/OS V1R1

20 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

The realloc() Function
When the realloc() function is used with z/OS Language Environment, a new area
is always obtained and the data is copied. This is different from IBM C/370 Version
1 and Version 2, where, if the new size was equal to or less than the original size,
the same area was used.

Programmers may want to ensure that their source code has no dependencies on
the behavior of the old version of the realloc() function, so that their code is
compatible with z/OS Language Environment.

Fetched Main Programs
C/370 V1 and V2 programs that are fetched must now be recompiled without a
main entry point. Under z/OS Language Environment, if you attempt to fetch a main
program it will fail.

User Exits
If both CEEBXITA and IBMBXITA are present in a relinked IBM C/370 Version 1 or
Version 2 module, CEEBXITA will have precedence over IBMBXITA.

#line Directive
The AD/Cycle C/370 V1R2 compiler ignored the #line directive when either the
EVENTS or the TEST compiler option was in effect. The z/OS C compiler does not
ignore the #line directive.

sizeof Operator
The behavior of sizeof when applied to a function return type was changed in the
C/C++ MVS V3R2 compiler. For example:

char foo();
..
s = sizeof foo();

If the example is compiled with a compiler prior to C/C++ MVS V3R2, char is
widened to int in the return type, so sizeof returns s = 4.

If the example is compiled with C/C++ MVS V3R2, or with any OS/390 C/C++
compiler, the size of the original char type is retained. In the above example, sizeof
returns s = 1. The size of the original type of other data types such as short, and
float is also retained.

With the OS/390 V2R4 C/C++ and subsequent compilers, you can use #pragma
wsizeof or the WSIZEOF compiler option to get sizeof to return the widened size for
function return types if your code has a dependency on this behavior. For more
information on #pragma wsizeof, see z/OS C/C++ Language Reference. For more
information on the WSIZEOF compiler option, see z/OS C/C++ User’s Guide.

From C/370 to z/OS V1R1

Chapter 4. Source Program Compatibility 21

System Programming C Applications Built with EDCXSTRX
If you have SPC applications that are built with EDCXSTRX and that use dynamic
C library functions, note that the name of the C library function module has changed
from EDCXV in C/370 V2 to CEEEV003 in z/OS Language Environment. Change
the name from EDCXV to CEEEV003 in the assembler source of your program that
loads the library, and reassemble.

The __librel() Function
The __librel() function is a System/370™ extension to SAA C. It returns the
release level of the library that your program is using, in a 32-bit integer. Under
z/OS Language Environment, it has a field containing a number that represents the
library product. IBM C/370 Version 1 and Version 2 libraries are product 0,
Language Environment is Product 1, and OS/390 Language Environment or z/OS
Language Environment is product 2.

In IBM C/370 V1 and V2, the high-order 8 bits were used to return the version
number. Now these 8 bits are divided into 2 fields. The first 4 bits contain the
product number and the second 4 bits contain the version number.

You must modify programs that use the information returned from __librel(). For
more information on __librel(), see the z/OS C/C++ Run-Time Library Reference.

Library Messages
There are differences in messages between C/370 and z/OS Language
Environment. Some run-time messages have been added and some have been
deleted; the contents of others have been changed. Any application that is affected
by the format or contents of these messages must be updated accordingly. Do not
build dependencies on message contents or message numbers.

Refer to the z/OS Language Environment Debugging Guide for details on run-time
messages and return codes.

Prefix of perror() and strerror() Messages
All perror() and strerror() messages under z/OS Language Environment contain
a prefix (in IBM C/370 Version 1 and Version 2 there were no prefixes to these
messages). The prefix is EDCxxxxa, where xxxx is a number and the a is either I, E,
or S. See z/OS Language Environment Debugging Guide for a list of these
messages.

Compiler Messages and Return Codes

There are differences in messages and return codes between the C/370 compilers
and the z/OS C compiler. Message contents have changed, and return codes for
some messages have changed (errors have become warnings, and the other way
around). Any application that is affected by message content or return codes must
be updated accordingly. Do not build dependencies on message content,
message numbers, or return codes. See z/OS C/C++ User’s Guide for a list of
messages.

From C/370 to z/OS V1R1

22 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

_Packed Structures and Unions
With the z/OS C compiler, you can no longer do the following:

v Assign _Packed and non-_Packed structures to each other

v Assign _Packed and non-_Packed unions to each other

v Pass a _Packed union or _Packed structure as a function parameter if a
non-_Packed version is expected (or the other way around)

If you attempt to do so, the compiler issues an error message.

Alternate Code Points
The following alternate code points are not supported by the z/OS C compiler:

v X’8B’ as alternate code point for X’C0’ (the left brace)

v X’9B’ as alternate code point for X’D0’ (the right brace)

These alternate code points were supported by the C/370 and AD/Cycle C/370
compilers (the NOLOCALE option was required if you were using the AD/Cycle C/370
V1R2 compiler).

From C/370 to z/OS V1R1

Chapter 4. Source Program Compatibility 23

24 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

Chapter 5. C/370 V1 to C/370 V2 Compiler Changes

This chapter describes some of the changes made between the C/370 V1 and V2
compilers. These changes also appear in the z/OS C compiler. Read this section if
you are migrating programs from C/370 V1.

Source Code Incompatibilities
This section describes the changes you may have to make to your source code
when moving from C/370 V1.

Characters
You can no longer assign a char the value ''. A character must be between the
single quotation marks. Under C/370 V1, '' was the same as '\0'.

A warning is now issued when the CHECKOUT compile-time option is specified, and
more than 4 bytes are assigned to a char or more than 2 bytes are assigned to a
wchar_t constant. These restrictions did not apply under C/370 V1.

Sign extension now occurs when the #pragma chars(signed) directive is used. Thus
the value of '\xff' is -1 when chars are signed. When a signed char literal is
converted to int, the sign extension will occur on the most significant specified byte
that is not shifted out. These are changes from C/370 V1. See Table 4 for
examples.

Table 4. Sign Extensions
Value of signed char literal Value of int
'\x80\x00' (int)0xffff8000
'\x80\x00\x00' (int)0xff800000
'\x80\x00\x00\x00' (int)0x80000000
'\x80\x00\x00\x00\x80' 0x00000080

Note: A hexadecimal escape sequence represents one char of data, so
'\x123456789' is equivalent to '\x89'.

The #pragma comment Directive
If you are using the #pragma comment directive, you must now enclose the
characters specified in double quotation marks. In C/370 V1, the double quotation
marks were not required.

Structure Declarations
With the z/OS C compiler, you must declare a struct type before any function calls
that contain the struct as one of its parameters. Otherwise, the struct in the
function call will be incomplete and the parameter passed must be a pointer to
void.

For example, the following program will not compile as desired because struct st
in func_call is an incomplete struct. The call of func_call with a pointer to a
struct will be an incompatible parameter type with the expected pointer to void.

int func_call (struct st *s); /* incomplete struct */

struct st { int x, y, z; };

© Copyright IBM Corp. 1996, 2001 25

int main(void)
{

struct st *t;
func_call(t); /* pointer to struct st but func_call */

/* can only accept pointer to void */
printf("%\n", t—>y);

}

To solve this problem, add a declaration before the function declaration:
struct st;

int func_call (struct st *s);

struct st { int x, y, z; };

Note: If you have the following declaration,
extern struct S my_struct;

the type must be completed before the —> or . operators can be performed
on my_struct. In C/370 V1, the struct S had to be a complete type at the
time this declaration was reached.

Function Argument Compatibility
If you compile the following example under C/370 V1, the compiler fails to notice
that the argument func1 is incompatible with the prototype for func2. The func2()
function requires a pointer to a void function with an argument of type void *, but
an argument of type pointer to void function with an argument of type int * is
passed instead. The z/OS C compiler will generate an error message in this
situation.
void func2(void (*)(void *));

void func1(int *);

main() {
func2(func1);

}

Pointer Considerations
According to the ANSI C Standard, pointers to void types and pointers to functions
are incompatible types. The C/370 V2, AD/Cycle C/370, C/MVS V3, and z/OS C
compilers perform some type checking, such as in assignments, argument passing
on function calls, and function return codes.

If you are not conforming to ANSI rules for the use of pointer types, your run-time
results may not be as expected, especially when you are using the compile-time
option OPTIMIZE.

With the C/370 V2, the AD/Cycle C/370, and the C/MVS V3R1 compilers, you could
not assign NULL to an integer value. For example, the following was not allowed:
int i = NULL;

With the C/MVS V3R2 and z/OS C compilers, you can assign NULL pointers to void
types if you specify LANGLVL(COMMONC) when you compile your program.

From C/370 to z/OS V1R1

26 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

Macro Changes
In stdio.h, the #define macro __VSAM_OPEN_AIX_PATH (a value for the __amrc struct
__last_op field), was replaced in C/370 V2 by __VSAM_OPEN_ESDS_PATH and
__VSAM_OPEN_KSDS_PATH.

Modules compiled with C/370 V1 work with z/OS Language Environment. However,
if you plan to compile your source with the z/OS C compiler, you must first change
it to use __VSAM_OPEN_ESDS_PATH and __VSAM_OPEN_KSDS_PATH.

From C/370 to z/OS V1R1

Chapter 5. C/370 V1 to C/370 V2 Compiler Changes 27

28 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

Chapter 6. Other Migration Considerations

This chapter provides additional considerations on migrating applications to z/OS
V1R1 C/C++ that were created with one of the following compilers, and with one of
the following libraries.

Compilers:

v The IBM C/370 V1 compiler, 5688-040

v The IBM C/370 V2 compiler, 5688-187

v The AD/Cycle C/370 V1R2 compiler with the TARGET(COMPAT) compiler option,
5688-216

Libraries:

v The IBM C/370 V1 library, 5688-039, and C-PL/1 Common Library, 5688-082

v The IBM C/370 V2 library, 5688-188, and C-PL/1 Common Library, 5688-082

Changes That Affect User JCL, CLISTs, and EXECs
This section describes changes that may affect your JCL, CLISTs and EXECs.

Return Codes and Messages
Library return codes and messages have been changed, and JCL, CLISTs and
EXECs that are affected by them must be changed accordingly (or else the
CEEBXITA exit must be customized to emulate the old return codes). IBM C/370
Version 1 and Version 2 return codes were from 0 to 999. However, the z/OS
Language Environment return codes have a different range. These return codes are
documented in z/OS Language Environment Debugging Guide.

Return codes greater than 4095 are returned as modulo 4095 return codes. The
return code for an abort is now 2000; it was 1000. The return code for an
unhandled SIGFPE, SIGILL, or SIGSEGV condition is now 3000; it was 2000.

Compiler message contents and return codes have changed. You must change
JCL, CLISTs, and EXECs that are affected by them. Refer to “Compiler Messages
and Return Codes” on page 22 for more information.

Changes in Data Set Names
The names of IBM-supplied data sets may change from one release to another.
See the z/OS Program Directory for more information on data set names.

Differences in Standard Streams
Under z/OS Language Environment there is no longer an automatic association of
ddnames SYSTERM, SYSERR, SYSPRINT with stderr. Command line redirection of the
type 1>&2 is necessary in batch to cause stderr and stdout to share a device.

In IBM C/370 Version 1 and Version 2, you could override the destination of error
messages by redirecting stderr. z/OS Language Environment determines the
destination of all messages from the MSGFILE run-time option. See the section on
the MSGFILE run-time option in the z/OS Language Environment Programming Guide
for more information.

© Copyright IBM Corp. 1996, 2001 29

Passing Command-Line Parameters to a Program
In IBM C/370 Version 1 or Version 2, if an error was detected with the parameters
being passed to the main program, the program terminated with a return code of 8
and a message indicating the reason why the program was not run. For example, if
there was an error in the redirection parameters, the message would indicate that
the program had terminated because of a redirection error.

Under z/OS Language Environment, the same message will be displayed, but the
program will also terminate with a 4093 abend, reason code 52 (hexadecimal 34).
For more information about the abend codes and messages see z/OS Language
Environment Debugging Guide.

SYSMSGS ddname
The method of specifying the language for compiler messages has changed.
Instead of specifying a messages data set for the SYSMSGS ddname, you must now
use the NATLANG run-time option. If you specify a data set for the SYSMSGS ddname, it
will be ignored.

Run-Time Options
This section describes changes that may affect your run-time options.

Ending the Run-Time Options List
In C/370 V1 and V2, when passing only run-time options to a C/370 program, you
did not have to end the arguments with a slash (/). With z/OS Language
Environment, you must end the arguments with a slash.

With z/OS Language Environment, if you have no run-time options and the input
arguments passed to main() contains a slash, you must prefix the arguments with a
slash. JCL, CLISTs, and EXECs that are affected by the slash must be changed
accordingly.

ISASIZE, ISAINC, STAE/SPIE, LANGUAGE, and REPORT options
Use the z/OS Language Environment equivalent for the IBM C/370 Version 1 and
Version 2 run-time options on the command line and in #pragma runopts.

ISASIZE/ISAINC becomes STACK
LANGUAGE becomes NATLANG
REPORT becomes RPTSTG
SPIE/STAE becomes TRAP

The C/370 run-time options are mapped to z/OS Language Environment
equivalents. However, if you do not use the z/OS Language Environment options,
during execution you will get a warning message which cannot be suppressed. JCL,
CLISTs and EXECs that are affected by these differences must be changed
accordingly.

STACK Default Size
The default size and increment for the STACK run-time option have changed. If you
have not indicated the size and increment, STACK will be allocated differently when
your program is running under z/OS Language Environment. The defaults in IBM
C/370 Version 1 and Version 2 were 0K size and 0K increment. The defaults under

From C/370 to z/OS V1R1

30 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

z/OS Language Environment without CICS® are 128K size, 128K increment, and
BELOW, and with CICS are 4K size, 4080 increment, and ANYWHERE. With CICS the
default location has changed to ANYWHERE.

To summarize, in z/OS Language Environment, the IBM-supplied defaults are
STACK(128K,128K,BELOW,KEEP) without CICS and STACK(4K,4080,ANYWHERE,KEEP)
with CICS.

STACK parameters
The parameters for the STACK run-time option are all positional in z/OS Language
Environment; in IBM C/370 Version 1 and Version 2, only the first two were. The
keyword parameter could be specified if the first two were omitted. Now, to specify
only ANYWHERE you must enter: STACK(,,ANYWHERE).

HEAP Default Size
The default size and increment for the HEAP run-time option have changed. If you
have not indicated the size and increment, HEAP will be allocated differently when
running under z/OS Language Environment. The defaults in IBM C/370 Version 1
and Version 2 were 4K size and 4K increment. The defaults under z/OS Language
Environment without CICS are 32K size and 32K increment and with CICS are 4K
size and 4080 increment.

Two new parameters have been added, initsz24 and incrsz24. They determine
how much of the heap is allocated and incremented below the 16M line.

For information about these parameters, see the z/OS Language Environment
Programming Reference.

To summarize, under z/OS Language Environment, the IBM-supplied defaults are
HEAP(32K,32K,ANYWHERE,KEEP,8K,4K) without CICS and
HEAP(4K,4080,ANYWHERE,KEEP,4K,4080) with CICS.

HEAP Parameters
In IBM C/370 Version 1 and Version 2, the first two of the four parameters for the
HEAP option were positional. The keyword parameters could be specified if the first
two were omitted. Under z/OS Language Environment, all parameters are
positional. To specify only KEEP, you must enter HEAP(,,,KEEP).

Compile-Time Options
This section describes changes that may affect your compile-time options.

DECK Compile-Time Option
In IBM C/370 V1, the DECK compiler option directed the object module to the data
set associated with SYSLIN. With the z/OS C compiler, as with the AD/Cycle C/370
and IBM C/370 V2 compilers, the object module is directed to the data set
associated with SYSPUNCH.

INLINE Compile-Time Option
The defaults for the INLINE compiler option have changed. In the past, the default
for the threshold suboption was 250 ACUs (Abstract Code Units). With the C/MVS
V3 and z/OS C compilers, the default is 100 ACUs.

From C/370 to z/OS V1R1

Chapter 6. Other Migration Considerations 31

OPTIMIZE Compile-Time Option
In the C/370 V2R1 and subsequent compilers, OPTIMIZE mapped to OPT(1).

Starting with OS/390 V2R6, the C compiler maps both OPTIMIZE and OPT(1) to
OPT(2).

SEARCH and LSEARCH Compile-Time Option
The include file search process has changed. Prior to the C/MVS V3R2 compiler, if
you used the LSEARCH option more than once, the compiler would only search the
libraries specified for the last LSEARCH option. Now the z/OS C compiler searches all
of the libraries specified for all of the LSEARCH options, from the point of the last
NOLSEARCH option.

Similarly, if you specify the SEARCH option more than once, the z/OS C compiler
searches all of the libraries specified for all of the SEARCH options, from the point of
the last NOSEARCH option. Previously, only the libraries specified for the last SEARCH
option were searched.

TEST Compile-Time Option
Starting with the OS/390 C/C++ compilers, the default for the PATH suboption of the
TEST option has changed from NOPATH to PATH. Also, the INLINE option is ignored
when the TEST option is in effect at OPT(0), but the INLINE option is no longer
ignored if OPT(1) or OPT(2) is in effect.

Starting with C/C++ MVS V3R2, a restriction applies to the TEST compiler option if
you are using the z/OS C/C++ compiler. Now, the maximum number of lines in a
single source file cannot exceed 131,072. If you exceed this limit, the results from
the Debug Tool and z/OS Language Environment Dump Services are undefined.

Language Environment Run-Time Options
If occurrences of ISASIZE/ISAINC, STAE/SPIE, LANGUAGE, and REPORT runopts are
specified by #pragma runopts in your source code, you may want to change them to
the z/OS Language Environment equivalent before recompiling. These options are
mapped to the z/OS Language Environment equivalent, but if you do not change
them, you will get a warning or informational message during compilation.

Precedence of Language Environment over C/370 for #pragma runopts
If you link together C/370 and z/OS Language Environment object modules, and
both modules contain #pragma runopts, the #pragma runopts settings in the
Language Environment object module will take precedence.

System Programming C Facility Applications with #pragma runopts
If you code a program for use in the SPC environment and you use #pragma
runopts to specify the heap or stack directives, the z/OS C compiler will expand
these directives according to the z/OS Language Environment defaults and rules.
Thus, the program may behave differently under z/OS Language Environment.

Decimal Exceptions
z/OS Language Environment provides support for the packed decimal overflow
exception using native S/390 hardware enablement (as did the C/370 V2R2 library).

From C/370 to z/OS V1R1

32 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

The value of the program mask in the program status word (PSW) is 4 (decimal
overflow enabled).

Migration and Coexistence Considerations
The following points identify migration and coexistence considerations for user
applications:

v CICS programs running under z/OS Language Environment are enabled for
decimal exceptions.

v The C packed decimal support routines are not supported in an environment that
exploits asynchronous events.

SIGTERM, SIGINT, SIGUSR1, and SIGUSR2 Exceptions
There are changes to application/program behavior for SIGTERM, SIGINT, SIGUSR1,
and SIGUSR2 exceptions from C/370 V1 and V2.

The differences or incompatibilities are:

v The defaults for the SIGINT, SIGTERM, SIGUSR1, and SIGUSR2 signals changed in
LE/370 Release 3, from what they were in C/370 V1 and V2 and LE/370 R1 and
R2. These changes were carried into z/OS Language Environment V1R1. In the
C/370 library and LE/370 R1 and R2, the defaults for SIGINT, SIGUSR1, and
SIGUSR2 were to ignore the signals. As of LE/370 R3, the defaults are to
terminate the program and return a return code of 3000. For SIGTERM, the default
has always been to terminate the program, but the return code is now 3000
whereas before it was 0.

v Applications that terminate abnormally will not drive the atexit list.

Running Different Versions of the Libraries under CICS
You cannot run two different versions of the C/370 run-time libraries within one
CICS region.

Sometimes a C/370 Version 2 CICS interface (EDCCICS) and the z/OS Language
Environment CICS interface can be present in a CICS system through CEDA/PPT
definitions and inclusion of modules in the APF STEPLIB. Even if both versions are
present, the z/OS Language Environment version will be initialized by CICS when
the region is initialized.

CICS Abend Codes and Messages
Abend codes such as ACC2 that were used by IBM C/370 Version 1 and Version 2
under CICS are not issued under z/OS Language Environment. An equivalent z/OS
Language Environment abend code is issued instead; for example, 4nnn.

CICS Reason Codes
Reason codes that appeared in the CICS message console log have been
changed. The new ones are documented in the z/OS Language Environment
Debugging Guide.

From C/370 to z/OS V1R1

Chapter 6. Other Migration Considerations 33

Standard Stream Support under CICS
Under CICS, with z/OS Language Environment, records sent to the transient data
queues associated with stdout and stderr with default settings take the form of a
message as follows:

ASA
terminal

id
transaction

id
sp Time Stamp

YYYYMMDDHHMMSS
sp data

1 4 4 1 14 1 108

where:

ASA is the carriage-control character

terminal id is a 4-character terminal identifier

transaction id is a 4-character transaction identifier

sp is a space

Time Stamp is the date and time displayed in the format YYYYMMDDHHMMSS

data is the data sent to the standard streams stdout and stderr.

C/370 V1 and V2 used a different format.

stderr Output under CICS
Output from stderr is sent to the CICS transient data queue, CESE. CESE is also
used by z/OS Language Environment for run-time error messages, dumps, and
storage reports. If you previously used this file exclusively for C/370 stderr output,
you should note that the output may be different.

Transient Data Queue Names under CICS
Transient data queue names are mapped as follows under z/OS Language
Environment:

OLD NAME NEW NAME
CCSI CESI
CCSO CESO
CCSE CESE

HEAP Option Used with the Interface to CICS
In C/370 V1R2 and V2, the location of heap storage under CICS was primarily
determined by the residence mode (RMODE) of the program.The logic for
determining the location of heap was as follows:

From C/370 to z/OS V1R1

34 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

With z/OS Language Environment, the location of heap storage is determined only
by the HEAP(...ANYWHERE|BELOW) options. RMODE does not affect where the heap
is allocated. Where the location of heap storage is important, you may want to
change source accordingly.

COBOL Library Routines
All of the language libraries in z/OS Language Environment are packaged as a
single unit in SCEERUN. Because of this packaging, for C-only applications, z/OS
Language Environment V1R1 has the potential to invade the user’s name space.

For example, z/OS Language Environment-enabled COBOL is available under z/OS
Language Environment V1R1, and the following situations are possible:

v If there is a user C function name prefixed with IGZ or ILB that happens to
correspond to a COBOL routine, there is the chance of binding in the COBOL
routine at link-edit time.

v If there is a fetch() statement for a routine with a name prefixed with IGZ or ILB
that happens to correspond to a COBOL routine that is dynamically loaded, it is
possible that the COBOL routine will be loaded at run time.

To prevent the first problem, specify the user link libraries ahead of the z/OS
Language Environment link libraries.

To prevent the second problem, specify the user execution libraries ahead of the
z/OS Language Environment execution libraries.

Passing Control to the Cross System Product
As in IBM C/370 Version 1 and Version 2, control can be passed between Cross
System Product (CSP) and z/OS Language Environment in three ways: XFER,
DXFR, and CALL.

If you have code that passes control from z/OS Language Environment V1R1 to
CSP, which in turn passes control back to z/OS Language Environment V1R1, the
behavior is undefined. Code that passes control from CSP to z/OS Language
Environment V1R1, which in turn passes control back to CSP, is supported. In
summary, z/OS Language Environment V1R1 must appear only once in the chain of
passed control.

RMODE = 24
below the

line?

Is
HEAP(...BELOW)

specified?

Allocate heap
ANY

Allocate heap
below 16M line

Yes

Yes

No

No

Allocate heap
below 16M line

Figure 2. Heap Location Logic

From C/370 to z/OS V1R1

Chapter 6. Other Migration Considerations 35

Syntax for the CC Command
With C/C++ MVS V3R2 and subsequent products, the CC command can be
invoked using a new syntax. At customization time, your system programmer can
customize the CC EXEC to accept only the old syntax (the one supported by
compilers prior to C/MVS V3R2), only the new syntax, or both syntaxes.

You should customize the CC EXEC to accept only the new syntax, because the
old syntax may not be supported in the future. If you customize the CC EXEC to
accept only the old syntax, keep in mind that it does not support Hierarchical File
System (HFS) files. If you customize the CC EXEC to accept both the old and new
syntaxes, you must invoke it using either the old or the new syntax, not a mixture of
both. If you invoke this EXEC with the old syntax, it will not support HFS files.

Refer to the z/OS Program Directory for more information about installation and
customization, and to the z/OS C/C++ User’s Guide for more information about
compiler options.

atexit List during abort()
Unlike under IBM C/370 Version 1 and Version 2, the atexit list is not driven after
a call to abort() under z/OS Language Environment.

Time Functions
For z/OS Language Environment, in the absence of customized locale information,
the ctime(), localtime(), and mktime() functions return Coordinated Universal
Time (UTC).

If you were running with the C/370 V2R2 library, and applied both PTF UN61216
and PTF UN77602, or did not apply either one, the functions will return local time in
the absence of customized locale information. Therefore, you will see a change in
behavior beginning in OS/390 V2R6 Language Environment.

You should customize your locale information. Otherwise, in rare cases, you may
encounter errors. In a POSIX application, you can supply time zone and alternative
time (e.g., daylight) information with the TZ environment variable. In a non-POSIX
application, you can supply this information with the _TZ environment variable. If no
TZ environment variable is defined for a POSIX application or no _TZ environment
variable is defined for a non-POSIX application, any customized information
provided by the LC_TOD locale category is used. By setting the TZ environment
variable for a POSIX application, or the _TZ environment variable for a non-POSIX
application, or by providing customized time zone or daylight information in an
LC_TOD locale category, you allow the time functions to preserve both time and date,
correctly adjusting for alternative time on a given date.

Refer to the z/OS C/C++ Programming Guide for more information about both
environment variables and customizing a locale.

Direction of Compiler Messages to stderr
All messages generated by the z/OS C/C++ compiler are sent to stderr. In the
past, some messages were sent to stdout.

From C/370 to z/OS V1R1

36 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

Compiler Listings
As of OS/390 C/C++ V2R6, OPT(1) maps to OPT(2). The compiler listing no longer
conforms to the format of the pseudo-assembler listing that was associated with
OPT(1). Listing formats, especially the pseudo-assembler parts, will continue to
change from release to release. Do not build dependencies on the structure or
content of listings. For information about listings for the current release, refer to
the z/OS C/C++ User’s Guide.

From C/370 to z/OS V1R1

Chapter 6. Other Migration Considerations 37

38 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

Chapter 7. Input and Output Operations Compatibility

Changes were made to input and output support in the C/370 V2R2 and LE/370
V1R3 libraries. These changes also apply to z/OS Language Environment V1R1. If
your programs performed input and output operations with the following products,
you should read the changes listed in this section. These products are:

v The C/370 V1 library

v The C/370 V2R1 library

References in this chapter to previous releases or previous behavior apply to the
products listed above.

You will generally be able to migrate “well-behaved” programs: programs that do not
rely on undocumented behavior, restrictions, or invalid behaviors of previous
releases. For example, if library documentation only specified that a return code
was a negative value, and your code relies on that value being -3, your code is not
well-behaved and is relying on undocumented behavior.

Another example of a program that is not well-behaved is one that specifies
recfm=F for a terminal file and depends on Language Environment to ignore this
parameter, as it did previously.

However, you may still need to change even well-behaved code under
circumstances described in the following section.

Opening Files
v When you call the fopen() or freopen() library function, you can specify each

parameter only once. If you specify any keyword parameter in the mode string
more than once, the function call fails. Previously, you could specify more than
one instance of a parameter.

v The library no longer supports uppercase open modes on calls to fopen() or
freopen(). You must specify, for example, rb instead of RB, to conform to the
ANSI/ISO standard.

v You cannot open a non-HFS file more than once for a write operation. Previous
releases allowed you, in some cases, to open a file for write more than once. For
example, you could open a file by its data set name and then again by its
ddname. This is no longer possible for non-HFS files, and is not supported.

v Previously, fopen() allowed spaces and commas as delimiters for mode string
parameters. Only commas are allowed now.

v If you are using PDSes or PDSEs, you cannot specify any spaces before the
member name.

Writing to Files
v Write operations to files opened in binary mode are no longer deferred.

Previously, the library did not write a block that held nn bytes out to the system
until the user wrote nn+1 bytes to the block. The z/OS Language Environment
library follows the rules for full buffering, described in z/OS C/C++ Programming
Guide, and writes data as soon as the block is full. The nn bytes are still written
to the file, the only difference is in the timing of when it is done.

v For non-terminal files, the backspace character ('\b') is now placed into files as
is. Previously, it backed up the file position to the beginning of the line.

© Copyright IBM Corp. 1996, 2001 39

v For all text I/O, truncation for fwrite() is now handled the same way that it is
handled for puts() and fputs(). If you write more data than a record can hold,
and your output data contains any of the terminating control characters, '\n' or
'\r' (or '\f', if you are using ASA), the library still truncates extra data;
however, recognizing that the text line is complete, the library writes subsequent
data to the next record boundary. Previously, fwrite() stopped immediately after
the library began truncating data, so that you had to add a control character
before writing any more data.

v You can now partially update a record in a file opened with type=record.
Previous libraries returned an error if you tried to make a partial update to a
record. Now, a record is updated up to the number of characters you specify, and
the remaining characters are untouched. The next update is to the next record.

v z/OS Language Environment blocks files more efficiently than some previous
libraries did. Applications that depend on the creation of short blocks may fail.

v The behavior of ASA files when you close them has changed. In previous
releases, this is what happened:

Written to file Read from file after fclose(), fopen()

abc\n\n\n abc\n\n\n\n

abc\n\n abc\n\n\n

abc\n abc\n

In this release, you read from the file what you wrote to it. For example:

Written to file Read from file after fclose(), fopen()

abc\n\n\n abc\n\n\n

abc\n\n abc\n\n

abc\n abc\n

In previous products, writing a single new-line character to a new file created an
empty file under MVS. z/OS Language Environment treats a single new-line
character written to a new file as a special case, because it is the last new-line
character of the file. The library writes a single blank to the file. When you read
this file, you see two new-line characters instead of one. You also see two
new-line characters on a read if you have written two new-line characters to the
file.

The behavior of appending to ASA files has also changed. The following table
shows what you get from an ASA file when you:

1. Open an ASA file for write.

2. Write abc.

3. Close the file.

4. Append xyz to the ASA file.

5. Open the same ASA file for read.

Table 5. Appending to ASA Files

abc Written to File, fclose()
then append xyz

What You Read from File after fclose(), fopen()

Previous release New release

abc ⇒ xyz \nabc\nxyz\n same as previous release

From C/370 to z/OS V1R1

40 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

Table 5. Appending to ASA Files (continued)

abc Written to File, fclose()
then append xyz

What You Read from File after fclose(), fopen()

Previous release New release

abc ⇒ \nxyz \nabc\nxyz\n \nabc\n\nxyz\n

abc ⇒ \rxyz \nabc\rxyz\n \nabc\n\rxyz\n

abc\n ⇒ xyz \nabc\nxyz\n same as previous release

abc\n ⇒ \nxyz \nabc\nxyz\n \nabc\n\nxyz\n

abc\n ⇒ \rxyz \nabc\rxyz\n \nabc\n\rxyz\n

abc\n\n ⇒ xyz \nabc\n\n\nxyz\n \nabc\n\nxyz\n

abc\n\n ⇒ \nxyz \nabc\n\n\nxyz\n same as previous release

abc\n\n ⇒ \rxyz \nabc\n\n\rxyz\n same as previous release

v The behavior of DBCS strings has changed.

1. I/O now checks the value of MB_CUR_MAX to determine whether to interpret
DBCS characters within a file.

2. When MB_CUR_MAX is 4, you can no longer place control characters in the
middle of output DBCS strings for interpretation. Control characters within
DBCS strings are treated as DBCS data. This is true for terminals as well.
Previous products split the DBCS string at the '\n' (new-line) control
character position by adding an SI (Shift In) control character at the new-line
position, displaying the line on the terminal, and then adding an SO (Shift Out)
control character before the data following the new-line character. If
MB_CUR_MAX is 1, the library interprets control characters within any string, but
does not interpret DBCS strings. SO and SI characters are treated as ordinary
characters.

3. When you are writing DBCS data to text files, if there are multiple SO (Shift
Out) control-character write operations with no intervening SI (Shift In) control
character, the library discards the SO characters, and marks that a truncation
error has occurred. Previous products allowed multiple SO control-character
write operations with no intervening SI control character without issuing an
error condition.

4. When you are writing DBCS data to text files and specify an odd number of
DBCS bytes before an SI control character, the last DBCS character is
padded with a X'FE' byte. If a SIGIOERR handler exists, it is triggered.
Previous products allowed incorrectly placed SI control-character write
operations to complete without any indication of an error.

5. Now, when an SO has been issued to indicate the beginning of a DBCS string
within a text file, the DBCS must terminate within the record. The record will
have both an SO and an SI.

Repositioning within Files
v The behavior of fgetpos(), fseek() and fflush() following a call to ungetc()

has changed. Previously, these functions have all ignored characters pushed
back by ungetc() and have considered the file to be at the position where the
first ungetc() character was pushed back. Also, ftell() acknowledged
characters pushed back by ungetc() by backing up one position if there was a
character pushed back. Now,

– fgetpos() behaves just as ftell()does.

From C/370 to z/OS V1R1

Chapter 7. Input and Output Operations Compatibility 41

– When a seek from the current position (SEEK_CUR) is performed, fseek()
accounts for any ungetc() character before moving, using the user-supplied
offset.

– fflush() moves the position back one character for every character that was
pushed back.

If you have applications that depend on the previous behavior of fgetpos(),
fseek(), or fflush(), you may use the new _EDC_COMPAT environment variable so
thatsource code need not change to compensate for the new behavior.
_EDC_COMPAT is described in z/OS C/C++ Programming Guide.

v For OS I/O to and from files opened in text mode, the ftell() encoding system
now supports higher blocking factors for smaller block sizes. In general, you
should not rely on ftell() values generated by code you developed using
previous releases of the library. You can try ftell() values taken in previous
releases for files opened in text or binary format if you set the environment
variable _EDC_COMPAT before you call fopen() or freopen(). Do not rely on
ftell() values saved across program boundaries. _EDC_COMPAT is described in
z/OS C/C++ Programming Guide.

v For record I/O, ftell() now returns the relative record number instead of an
encoded offset from the beginning of the file. You can supply the relative record
number without acquiring it from ftell(). You cannot use old ftell() values for
record I/O, regardless of the setting of _EDC_COMPAT. _EDC_COMPAT is described in
z/OS C/C++ Programming Guide.

v If you have used ungetc() to move the file pointer to a position before the
beginning of the file, calls to ftell() and fgetpos() now fail. Previously, ftell()
returned the value 0 for such calls, but set errno to a non-zero value. Previously,
fgetpos() did not account for ungetc() calls. See z/OS C/C++ Programming
Guide for information on how to change fgetpos() behavior by using
_EDC_COMPAT.

For example, suppose that you are at relative position 1 in the file and ungetc()
is performed twice. ftell() and fgetpos() will now report the relative position -1,
which is before the start of the file, causing both ftell() and fgetpos() to fail.

v After you have called ftell(), calls to setbuf() or setvbuf() may fail.
Applications should never call I/O functions between calls to fopen() or
freopen() and calls to the functions that control buffering.

Closing and Reopening ASA Files
The behavior of ASA files when you close and reopen them is now consistent:

Table 6. Closing and Reopening ASA Files

Written to file

Physical record after close

Previous behavior New behavior

abc Char abc (1) same as previous release

Hex 4888
0123

(1)

abc\n Char abc (1) same as previous release

Hex 4888
0123

(1)

From C/370 to z/OS V1R1

42 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

Table 6. Closing and Reopening ASA Files (continued)

Written to file

Physical record after close

Previous behavior New behavior

abc\n\n Char abc
0

(1)
(2)

Char abc (1)
(2)

Hex 4888
0123
F
0

(1)

(2)

Hex 4888
0123
4
0

(1)

(2)

abc\n\n\n Char abc
-

(1)
(2)

Char abc (1)
(2)

Hex 4888
0123
6
0

(1)

(2)

Hex 4888
0123
4
0

(1)
(2)

abc\r Char abc
+

(1)
(2)

same as previous release

Hex 4888
0123
4
E

(1)

(2)

abc\f Char abc
1

(1)
(2)

same as previous release

Hex 4888
0123
F
1

(1)

(2)

fldata() Return Values
There are minor changes to the values that the fldata() library function returns. It
may now return more specific information in some fields. For more information on
fldata(), see the “Input and Output” section in z/OS C/C++ Programming Guide.

Error Handling
The general return code for errors is now EOF. In previous products, some I/O
functions returned 1 as an error code to indicate failure. This caused some
confusion, as 1 is a possible errno value as well as a return code. EOF is not a valid
errno value.

Programs that rely on specific values of errno may not run as expected, because
certain errno values have changed. Starting with OS/390 Language Environment
V1R5, error messages have the format EDC5xxx. You can find the error message
information for a particular errno value by applying the errno value to EDC5xxx (for
example, 021 becomes EDC5021), and looking up the EDC5xxx message in z/OS
Language Environment Debugging Guide manual.

From C/370 to z/OS V1R1

Chapter 7. Input and Output Operations Compatibility 43

Miscellaneous
v The inheritance model for standard streams now supports repositioning.

Previously, if you opened stdout or stderr in update mode, and then called
another C program by using the ANSI-style system() function, the program that
you called inherited the standard streams, but moved the file position for stdout
or stderr to the end of the file. Now, the library does not move the file position to
the end of the file. For text files, the position is moved only to the nearest record
boundary not before the current position. This is consistent with the way stdin
behaves for text files.

v The values for L_tmpnam and FILENAME_MAX have been changed:

Constant Old values New values

L_tmpnam 47 1024

FILENAME_MAX 57 1024

v The names produced by the tmpnam() library function are now different. Any code
that depends on the internal structure of these names may fail.

VSAM I/O Changes
v The library no longer appends an index key when you read from an RRDS file

opened in text or binary mode.

v RRDS files opened in text or binary mode no longer support setting the access
direction to BWD.

Terminal I/O Changes
v The library will now use the actual recfm and lrecl specified in the fopen() or

freopen() call that opens a terminal file. Incomplete new records in fixed binary
and record files are padded with blank characters until they are full, and the
__recfmF flag is set in the fldata() structure.

Previously, MVS terminals unconditionally set recfm=U. Terminal I/O did not
support opening files in fixed format.

v The use of an LRECL value in the fopen() or freopen() call that opens a file sets
the record length to the value specified.

Previous releases unconditionally set the record length to the default values.

v The use of a RECFM value in the fopen() or freopen() call that opens a file sets
the record format to the value specified.

Previous releases unconditionally set the record format to the default values.

v For input text terminals, an input record now has an implicit logical record
boundary at LRECL if the size of the record exceeds LRECL. The character data in
excess of LRECL is discarded, and a '\n' (new-line) character is added at the end
of the record boundary. You can now explicitly set the record length of a file as a
parameter on the fopen() call.

The old behavior was to allow input text records to span multiple LRECL blocks.

v Binary and record input terminals now flag an end-of-file condition with an empty
input record. You can clear the EOF condition by using the rewind() or
clearerr() library function.

Previous products did not allow these terminal types to signal an end-of-file
condition.

From C/370 to z/OS V1R1

44 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

v When an input terminal requires input from the system, all output terminals with
unwritten data are flushed in a way that groups the data from the different open
terminals together, each separated from the other with a single blank character.

The old behavior is equivalent to the new behavior, except that two blank
characters separate the data from each output terminal.

From C/370 to z/OS V1R1

Chapter 7. Input and Output Operations Compatibility 45

From C/370 to z/OS V1R1

46 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

Part 3. From Pre-OS/390 Releases of C/C++ to z/OS V1R1
C/C++

This part discusses the implications of migrating applications that were created with
one of the following compilers and one of the following libraries to the z/OS V1R1
C/C++ product.

Compilers:

v The AD/Cycle C/370 V1R1 compiler, 5688-216

v The AD/Cycle C/370 V1R2 compiler, 5688-216

v The IBM C/C++ for MVS/ESA V3R1 compiler, 5655-121

v The IBM C/C++ for MVS/ESA V3R2 compiler, 5655-121, also known as the IBM
OS/390 C/C++ V1R1 compiler, 5645-001

v IBM OS/390 C/C++ V1R1 compiler, 5645-001

Libraries:

v IBM SAA AD/Cycle Language Environment/370 V1R1, 5688-198

v IBM SAA AD/Cycle Language Environment/370 V1R2, 5688-198

v IBM SAA AD/Cycle Language Environment/370 V1R3, 5688-198

v Language Environment V1R4, 5688-198

v Language Environment V1R5, 5688-198

v The OpenEdition AD/Cycle C/370 Language Support Feature of MVS/ESA SP
V5R1, 5655-068 and 5655-069

v The C/C++ Language Feature of MVS/ESA SP V5R2, 5655-068 and 5655-069

v The C/C++ Language Feature of MVS/ESA SP V5R2, 5655-068 and 5655-069

v OS/390 V1R1 Language Environment, 5645-001

Note: The OS/390 V1R1 compiler and library were equivalent to the final MVS/ESA
compiler and library.

This part does not discuss converting a C program to C++. The only C++ compiler
migration considerations covered are those between different versions of the C++
component of the IBM C/C++ for MVS/ESA compilers and the z/OS V1R1 C/C++
compiler.

In this part, references to the products in the first column of the following table also
apply to the products in the second column.

References To These Products Also Apply To These Products

LE/370 R3 MVS/ESA SP V5R1 OpenEdition AD/Cycle
C/370 Language Support Feature

Language Environment R4 C/C++ Language Feature of MVS/ESA SP
V5R2

Language Environment R5 C/C++ Language Feature of MVS/ESA SP
V5R2 (Modification 2)

OS/390 R1 IBM C/C++ for MVS V3R2 compiler and
Language Environment R5

© Copyright IBM Corp. 1996, 2001 47

48 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

Chapter 8. Application Executable Program Compatibility

This chapter will help application programmers understand the compatibility
considerations of application executable programs.

An executable program is the output of the prelink/link or bind process. For more
information on the relationship between prelinking, linking, and binding, see the
section About Prelinking, Linking, and Binding in z/OS C/C++ User’s Guide. The
output of this process is a load module when stored in a PDS and a program object
when stored in a PDSE or HFS.

Generally, C/370 executable programs execute successfully with z/OS Language
Environment V1R1 without source code changes, recompilation, or relinking. This
chapter highlights exceptions and shows how to solve specific problems in
compatibility.

Executable program compatibility problems requiring source changes are discussed
in “Chapter 9. Source Program Compatibility” on page 51.

Note: The terms in this section having to do with linking (bind, binding, link,
link-edit) refer to the process of creating an executable program from object
modules.

Input and Output Operations
Programs running with LE/370 V1R1 or V1R2 may not work without changes if they
have dependencies on any of the input and output behavior listed in “Chapter 11.
Input and Output Operations Compatibility” on page 61.

System Programming C Facility (SPC) Executable Programs
If you have an LE/370 V1R1 or V1R2 SPC application that was built with exception
handling (that is linked with EDCXERR, EDCXABRT and EDCXHDLR), you must
relink it with z/OS Language Environment V1R1 using the SCEESPC data set.

If your SPC module was built with exception handling, automatic library call is not
enabled when you relink, so you must explicitly include the new routine
@@SMASK.

Using the LINK Macro to Initiate a main()
When the LINK macro was used to initiate one C main() from another in LE/370
V1R0, any run-time options specified in calling a child main() were ignored. The
parent run-time options were inherited. The conditions left unhandled in the child
were propagated to the parent. Starting with LE/370 V1R1, and continuing through
to z/OS Language Environment V1R1 run-time options are no longer propagated.

With LE/370 V1R0, using LINK to initiate a child main() restricted you from using
standard streams in the child and from using memory files in the child. Starting with
LE/370 V1R1 and continuing through to z/OS Language Environment V1R1, these
restrictions no longer apply. Therefore, the parent’s standard streams and memory
files are shared by the child.

© Copyright IBM Corp. 1996, 2001 49

Inheritance of Run-Time Options with EXEC CICS LINK
When an EXEC CICS LINK command was used with LE/370 V1R1, run-time
options were inherited from an ancestor. Users who used STACK and HEAP to tune
C-CICS applications had to take particular note of this. Because of this inheritance,
a large heap or stack size specified in the first run unit of a transaction chain of run
units could cause shortages when it was allocated for each unit. For programs
running under later releases of Language Environment, including z/OS Language
Environment V1R1, run-time options are no longer inherited.

STAE/NOSPIE and SPIE/NOSTAE Mapping
STAE and SPIE options have been replaced with the TRAP option. We recommend
that you use the TRAP option, not STAE and SPIE. However, for ease of migration, the
STAE and SPIE options are supported as long as the TRAP option is not explicitly
specified. If the STAE option and SPIE option are used, they map to TRAP(ON,SPIE).
If NOSTAE and NOSPIE are used, they map to TRAP(OFF). When the values are mixed,
for example, STAE/NOSPIE, they map to TRAP(ON,SPIE). In LE/370 V1R1, SPIE/NOSTAE
and STAE/NOSPIE are mapped to TRAP(OFF).

Class Library Execution Incompatibilities
There are execution incompatibilities between the class libraries provided with the
C++/MVS™ V3R1M0, V3R1M1, V3R2M0 compilers and the libraries provided with
the z/OS C++ compiler. You must recompile and relink applications that are
dynamically bound to those class libraries for the following migration paths:

v Collection Class

– From C++/MVS V3R1M1 or V3R2M0 (C++ version) to z/OS V1R1 C/C++

– From C++/MVS V3R1M0 to z/OS V1R1 C/C++

v Application Support Class

– From C++/MVS V3R1M1 or V3R2M0 (C++ version) to z/OS V1R1 C/C++

– From C++/MVS V3R1.0 to z/OS V1R1 C/C++

Refer to “Appendix. Class Library Migration Considerations” on page 79 for some
background information about class libraries and compatibility considerations.

From Pre-OS/390 Releases to z/OS V1R1

50 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

Chapter 9. Source Program Compatibility

In general, you can use source programs with the z/OS V1R1 C/C++ product
without modification, if they were created with one of the following:

v AD/Cycle C/370 compiler running with Language Environment V1R2 or later

v C/MVS V3R1 or V3R2 compiler running with Language Environment V1R4 or
later

v C++/MVS V3R1, and C++/MVS V3R2 programs running with Language
Environment V1R4 or later

This chapter highlights the exceptions and shows how to solve specific problems in
compatibility.

“Chapter 10. Other Migration Considerations” on page 55 has information on
run-time options, which may also affect source code compatibility.

Input and Output Operations
You may have to change programs that ran with the LE/370 R1 or R2 library so that
they work with z/OS Language Environment, if they have dependencies on any of
the input and output behaviors listed in “Chapter 11. Input and Output Operations
Compatibility” on page 61.

SIGFPE Exceptions
Decimal overflow conditions were masked in R1 and R2 of LE/370. These
conditions were enabled when the packed decimal data type was introduced in the
AD/Cycle C/370 R2 compiler, and continue to be enabled with z/OS Language
Environment V1R1.

If you have old load modules that accidentally generated decimal overflow
conditions, they may behave differently with z/OS Language Environment V1R1 by
raising unexpected SIGFPE exceptions. Without source alteration, such modules
cannot be migrated to the new library, and are unsupported. It is unlikely that such
modules will occur in a C-only environment. These unexpected exceptions may
occur in mixed language modules, particularly those using C and assembler code
where the assembler code explicitly manipulates the program mask.

Program Mask Manipulations
Programs created with LE/370 R1 or R2 that explicitly manipulated the program
mask may require source alteration to execute correctly under z/OS Language
Environment V1R1. Changes are required if you have one of the following types of
programs:

v A C program containing assembler interlanguage calls (ILC), in which the invoked
code uses the S/370 decimal instructions that might generate an unmasked
decimal overflow condition, requires modification for migration. There are two
methods for migrating the code. The first one is preferred:

– Modify the assembler code to save the existing mask, set the new value, and
when finished, restore the saved mask.

© Copyright IBM Corp. 1996, 2001 51

– Change the C code so that the produced SIGFPE signal is ignored in the called
code. In the following example, the SIGNAL calls surround the
overflow-producing code. The SIGFPE exception signal is ignored, and then
reenabled:

signal(SIGFPE, SIG_IGN); /* ignore exceptions */
...
callit(): /* in called routine */
...
signal(SIGFPE, SIG_DFL); /* restore default handling */

v A C program containing assembler ILCs that explicitly alter the program mask,
and do not explicitly save and restore it, also requires modification for migration.

If user code explicitly alters the state of the program mask, the value before
modification must be saved, and restored to its former value after the
modification. You must ensure that the decimal overflow program mask bit is
enabled during the execution of C code. Failure to preserve the mask may result
in unpredictable behavior.

These changes also apply in a System Programming C environment, and to
Customer Information Control System (CICS) programs in the handling and
management of the PSW mask.

#line Directive
The AD/Cycle C/370 and C/MVS V3R1 compilers ignored the #line directive when
either the EVENTS or the TEST compiler option was in effect. As of C/MVS V3R2, the
compiler does not ignore the #line directive.

sizeof Operator
The behavior of sizeof when applied to a function return type was changed in the
C/C++ MVS V3R2 compiler. For example:

char foo();
..
s = sizeof foo();

If the example is compiled with a compiler prior to C/C++ MVS V3R2, char is
widened to int in the return type, so sizeof returns s = 4.

If the example is compiled with C/C++ MVS V3R2, or with any OS/390 C/C++
compiler, the size of the original char type is retained. In the above example, sizeof
returns s = 1. The size of the original type of other data types such as short, and
float is also retained.

With OS/390 V2R4 C/C++ and subsequent compilers, you can use #pragma
wsizeof or the WSIZEOF compiler option to get sizeof to return the widened size for
function return types if your code has a dependency on this behavior. For more
information on #pragma wsizeof, see the z/OS C/C++ Language Reference. For
more information on the WSIZEOF compiler option, see the z/OS C/C++ User’s
Guide.

From Pre-OS/390 Releases to z/OS V1R1

52 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

_Packed Structures and Unions
If you are migrating from an AD/Cycle C/370 compiler to the z/OS C compiler, you
can no longer do the following:

v assign _Packed and non-_Packed structures to each other

v assign _Packed and non-_Packed unions to each other

v pass a _Packed union or _Packed structure as a function parameter if a
non-_Packed version is expected (or the other way around)

If you attempt to do so, the compiler issues an error message.

Alternate Code Points
The following alternate code points are not supported by the z/OS C/C++ compilers:

v X'8B' as alternate code point for X'C0' (the left brace)

v X'9B' as alternate code point for X'D0' (the right brace)

These alternate code points were supported by the C/370 and AD/Cycle C/370
compilers (the NOLOCALE option was required if you were using the AD/Cycle C/370
V1R2 compiler).

Supporting the ANSI standard
The C/C++ MVS V3R2 and z/OS C/C++ compilers support the 1992 draft of the
ANSI standard, and no longer interpret wide-character constants that contain
escape sequences.

LANGLVL(ANSI)
Starting with the C/C++ MVS V3R2 compiler, if you specify LANGLVL(ANSI), the
compiler recognizes char, unsigned char, and signed char as three distinct types.

Compiler Messages and Return Codes
There are differences in messages and return codes between different versions of
the compiler. Message contents have changed, and return codes for some
messages have changed (some errors have become warning, and in very rare
situations, some warnings have become errors). You must update accordingly any
application that is affected by message contents or return codes. Do not build
dependencies on message content, message numbers, or return codes. See
z/OS C/C++ User’s Guide for a list of compiler messages.

Collection Class Library Source Code Incompatibilities
There are source code incompatibilities between the native Collection Class
Libraries available with the C++/MVS V3R1 and z/OS C++ compilers. You must
change your source code if you are migrating to z/OS C++ from C++/MVS V3R1
and your application makes use of either of the following:

newCursor method
The return type of the newCursor method is now a pointer to the abstract
cursor class ICursor (*ICursor).

Deriving from Reference Classes
Deriving from Reference Classes without overriding existing Collection
Class member functions is still possible. However, you can no longer

From Pre-OS/390 Releases to z/OS V1R1

Chapter 9. Source Program Compatibility 53

override existing Collection Class functions and use your derived Collection
Class in a polymorphic way without additional effort. Refer to the chapter
about "Polymorphism and the Collections", in the OS/390 C/C++ IBM Open
Class Library User’s Guide for more information.

These changes were made in the Collection Class Library that was available with
the C++/MVS V3R1M1 compiler, and do not affect you if you are migrating from the
C++/MVS V3R1M1, C++/MVS V3R2, or any OS/390 C++ compiler.

Also, the structure of the Collection Classes changed in MVS V3R1M1. All classes,
including the concrete classes, are now related in an abstract hierarchy. The
abstract hierarchy makes use of virtual inheritance. When you subclass from a
Collection Class and implement your own copy constructor, you must initialize the
virtual base class IACollection<Element> in your derived classes. Therefore, if you
subclassed from a concrete Collection Class that was shipped with C++/MVS V3R1,
and are migrating to the Collection Classes that are shipped with z/OS V1R1
C/C++, you will have to change the implementation of your copy constructor by
adding the virtual base class initialization.

Refer to “Appendix. Class Library Migration Considerations” on page 79 for some
background information about class libraries and compatibility considerations.

DSECT Utility
Header files generated by the DSECT utility now use #pragma pack rather than
_Packed for packed structures. In rare cases, you may have to modify and
recompile your code.

From Pre-OS/390 Releases to z/OS V1R1

54 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

Chapter 10. Other Migration Considerations

This chapter provides additional considerations on migrating applications from the
compilers and libraries listed in “Part 3. From Pre-OS/390 Releases of C/C++ to
z/OS V1R1 C/C++” on page 47 to the z/OS V1R1 C/C++ product.

Class Library Object Module Incompatibilities
There are object incompatibilities between the class libraries provided with the IBM
C++/MVS V3R1M0, V3R1M1, V3R2M0 compilers and the libraries provided with the
z/OS C++ compilers. You must recompile and relink applications that are
dynamically bound to those class libraries, for the following migration paths:

v Collection Class

– From C++/MVS V3R1M1 or V3R2M0 (C++ version) to z/OS V1R1 C/C++

– From C++/MVS V3R1M0 to z/OS V1R1 C/C++

v Application Support Class

– From C++/MVS V3R1M1 or V3R2M0 (C++ version) to z/OS V1R1 C/C++

– From C++/MVS V3R1M0 to z/OS V1R1 C/C++

Refer to “Appendix. Class Library Migration Considerations” on page 79 for some
background information about class libraries and compatibility considerations.

Removal of Database Access Class Library Utility
Starting with OS/390 V2R4 C/C++, the Database Access Class Library utility is no
longer available.

Changes That Affect User JCL, CLISTs, and EXECs
This section describes changes that may affect your JCL, CLISTs, and EXECs.

CXX Parameter in JCL Procedures
With C++/MVS V3R2, OS/390, and z/OS C++ compilers, the CBCC, CBCCL, and
CBCCLG procedures, which compile C++ code, now include parameter CXX. You
must include this parameter if you have written your own JCL to compile a C++
program. Otherwise, you invoke the C compiler.

When you pass options to the compiler, you must specify parameter CXX. You must
use the following format to specify options:
run-time options/CXX compile-time options

SYSMSGS and SYSXMSGS ddnames
With the C/C++ MVS V3R2 and z/OS C/C++ compilers, the method of specifying
the language for compiler messages has changed. At compile time, instead of
specifying message data sets on the SYSMSGS and SYSXMSGS ddnames, you must
now use the NATLANG run-time option. If you specify data sets for these ddnames,
they are ignored.

Compiler Messages and Return Codes
There are differences in messages and return codes between different versions of
the compiler. Message contents have changed, and return codes for some
messages have changed (some errors have become warnings, and in very rare

© Copyright IBM Corp. 1996, 2001 55

situations, some warnings have become errors). You must update accordingly any
application that is affected by message contents or return codes. Do not build
dependencies on message content, message numbers, or return codes. See
z/OS C/C++ User’s Guide for a description of compiler messages and return codes.

Changes in Data Set Names
The names of IBM-supplied data sets may change from one release to another.
See the z/OS Program Directory for more information on data set names.

Decimal Exceptions
z/OS Language Environment provides support for the packed decimal overflow
exception using native S/390 hardware enablement, as did LE/370 V1R3, Language
Environment V1R4, and Language Environment V1R5.

The value of the program mask in the program status word (PSW) is 4 (decimal
overflow enabled).

Migration and Coexistence
The following points identify migration and coexistence considerations for user
applications:

v As of LE/370 V1R3, CICS programs were enabled for decimal exceptions.

v The C packed decimal support routines are not supported in an environment that
exploits asynchronous events.

SIGTERM, SIGINT, SIGUSR1, and SIGUSR2 Exceptions
As of LE/370 V1R3, there were changes to application/program behavior for
SIGTERM, SIGINT, SIGUSR1, and SIGUSR2 exceptions from previous releases of the
LE/370 product. These changes in behavior carried over into the z/OS Language
Environment V1R1 product.

The differences or incompatibilities are:

v The defaults for the SIGINT, SIGTERM, SIGUSR1, and SIGUSR2 signals changed in
LE/370 R3, from what they were in C/370 V1R1 and V1R2 and LE/370 V1R1
and V1R2. In the C/370 library and LE/370 V1R1 and V1R2, the defaults for
SIGINT, SIGUSR1, and SIGUSR2 were to ignore the signals. As of LE/370 V1R3, the
default is to terminate the program and return a return code of 3000. For
SIGTERM, the default has always been to terminate the program, but the return
code is now 3000 whereas before it was 0.

v Applications that terminate abnormally will not drive the atexit list.

Compile-Time Options
This section describes changes that may affect your compile-time options.

OPTIMIZE Compile-Time Option
In the AD/Cycle C/370 compilers:

v OPT(0) mapped to NOOPT

v OPT and OPT(1) mapped to OPT(1)

v OPT(2) mapped to OPT(2)

From Pre-OS/390 Releases to z/OS V1R1

56 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

In the C/C++ MVS/ESA V3 compilers, and the OS/390 V1R1 compiler:

v OPT(0) mapped to NOOPT

v OPT, OPT(1) and OPT(2) mapped to OPT

Starting with the OS/390 V2R6 C/C++ compiler:

v OPT(0) maps to NOOPT

v OPT, OPT(1) and OPT(2) map to OPT(2).

While the OPT level mapping for the C/C++ for MVS/ESA V3 and OS/390 V2R6
compilers is the same, the optimization is different. The underlying compiler
technology within these compilers has changed significantly.

IDL Compile-Time Option
As of OS/390 V2R4 C/C++, the IDL compiler option is no longer available. If you
continue to require IDL for your applications, new IDL or IDL modifications must be
coded by hand. You can then use the IDL compiler to generate your C/C++ source
code.

INLINE Compile-Time Option
The defaults for the C compile INLINE compiler option were changed in the C/MVS
V3R1 compiler. In the past, the default for the threshold suboption was 250 ACUs
(Abstract Code Units). With the C/MVS V3 and the z/OS C compilers, the default is
100 ACUs.

SEARCH and LSEARCH Compile-Time Option
The include file search process has changed. Prior to the C/MVS V3R2 compiler, if
you used the LSEARCH option more than once, the compiler searched only the
libraries specified for the last LSEARCH option. Now the z/OS C compilers search all
of the libraries specified for all of the LSEARCH options, from the point of the last
NOLSEARCH option.

Similarly, if you specify the z/OS C/C++ SEARCH option more than once, the z/OS
C++ compilers search all of the libraries specified for all of the SEARCH options, from
the point of the last NOSEARCH option. Previously, only the libraries specified for the
last SEARCH option were searched.

TEST Compile-Time Option
Starting with the OS/390 C/C++ compilers, the default for the PATH suboption of the
TEST option has changed from NOPATH to PATH. Also, the INLINE option is ignored
when the TEST option is in effect at OPT(0), but the INLINE option is no longer
ignored if OPT(1) or OPT(2) is in effect.

Starting with C/C++ MVS V3R2, a restriction applies to the TEST compiler option.
Now, the maximum number of lines in a single source file cannot exceed 131,072. If
you exceed this limit, the results from the Debug Tool and z/OS Language
Environment Dump Services are undefined.

HALT Compile-Time Option
The C++/MVS V3R2 and z/OS C++ compilers do not accept 33 as a valid
parameter for the HALT compile-time option.

From Pre-OS/390 Releases to z/OS V1R1

Chapter 10. Other Migration Considerations 57

Syntax for the CC Command
With the C/C++ MVS V3R2 and z/OS C/C++ compilers, the CC command can be
invoked using a new syntax. At customization time, your system programmer can
customize the CC EXEC to accept only the old syntax (the one supported by
compilers before C/C++ MVS V3R2), only the new syntax, or both syntaxes.

You should customize the CC EXEC to accept only the new syntax, because the
old syntax may not be supported in the future. If you customize the CC EXEC to
accept only the old syntax, keep in mind that it does not support Hierarchical File
System (HFS) files. If you customize the CC EXEC to accept both the old and new
syntaxes, you must invoke it using either the old or the new syntax, not a mixture of
both. If you invoke this EXEC with the old syntax, it does not support HFS files.

Refer to the z/OS Program Directory for more information about installation and
customization, and to the z/OS C/C++ User’s Guide for more information about
compiler options.

Time Functions
You should customize your locale information. Otherwise, in rare cases, you may
encounter errors. In a POSIX application, you can supply time zone and alternative
time (e.g., daylight) information with the TZ environment variable. In a non-POSIX
application, you can supply this information with the _TZ environment variable. If no
TZ environment variable is defined for a POSIX application or no _TZ environment
variable is defined for a non-POSIX application, any customized information
provided by the LC_TOD locale category is used. By setting the TZ environment
variable for a POSIX application, or the _TZ environment variable for a non-POSIX
application, or by providing customized time zone or daylight information in an
LC_TOD locale category, you allow the time functions to preserve both time and date,
correctly adjusting for alternative time on a given date.

Refer to the z/OS C/C++ Programming Guide for more information about both
environment variables and customizing a locale.

Abnormal Termination Exits
The abnormal termination exits CEEBDATX (for batch) and CEECDATX (for CICS)
are now automatically linked at install time for z/OS Language Environment the
sample exit is no longer required. These exits were only available in the sample
library in LE/370 V1R3. They allow you to automatically produce a system dump
(with abend code 4039), when abnormal termination occurs. In previous releases of
Language Environment, only an LE formatted dump was generated (which
continues to be produced under z/OS Language Environment V1R1).

For a non-CICS application, you can trigger the dump by ensuring that SYSUDUMP
is defined in the GO step of the JCL that you are using (for example, by including
the statement SYSUDUMP DD SYSOUT=*). If SYSUDUMP is not included in your
JCL, or is defined as DUMMY, the dump will be suppressed. As of C/C++ for
MVS/ESA V3R1, the standard JCL procedures shipped with the compiler do not
include SYSUDUMP.

In a CICS environment, you automatically receive the default transaction dump
unless you disable it by using the CEMT transaction, and by specifying the
dumpcode ’4039’.

From Pre-OS/390 Releases to z/OS V1R1

58 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

You may also modify CEEBDATX and CEECDATX to suppress the dumps. The
exits are available in the z/OS Language Environment V1R1 sample library.

Standard Stream Support
Under CICS, with z/OS Language Environment, records sent to the transient data
queues associated with stdout and stderr with default settings take the form of a
message as follows:

ASA
terminal

id
transaction

id
sp Time Stamp

YYYYMMDDHHMMSS
sp data

1 4 4 1 14 1 108

where:

ASA is the carriage-control character

terminal id is a 4 character terminal identifier

transaction id is a 4 character transaction identifier

sp is a space

Time Stamp is the date and time displayed in the format YYYYMMDDHHMMSS

data is the data sent to the standard streams stdout and stderr

This format was associated with stderr for all releases of Language Environment.
However, it has only been used for stdout since LE/370 Release 3; therefore, you
should be aware of this change if you are migrating to z/OS Language Environment
V1R1 from LE/370 V1R1 or V1R2.

Direction of Compiler Messages to stderr
All messages produced by the C/C++ MVS V3R2 and z/OS C++ compilers are sent
to stderr. In the past, some messages were sent to stdout.

Array new
In the C++/MVS V3R1 compiler, the array version of new was not supported. It is
supported in a PTF (APAR PN72107) available for the C++/MVS V3R1 compiler,
and it is also supported in the C++/MVS V3R2 and z/OS C/C++ compilers.

If you are migrating from the base C/C++ MVS V3R1 compiler to z/OS V1R1
C/C++, and you have written your own global new operator, it is no longer called
when you create an array object. For example:
void*
operator new (MyClass *, size_t sz) { g_new_count++;

return MyMalloc(sz); }

main() {
X new_array[10]; // the global new operator

// shown above will not be called if the fix for
// APAR PN72107 or the V3R2
// compiler is installed

}

You have to add an overloaded operator to new[] if you require this for arrays.

From Pre-OS/390 Releases to z/OS V1R1

Chapter 10. Other Migration Considerations 59

Compiler Listings
As of OS/390 C/C++ V2 R6, OPT(1) maps to OPT(2). The compiler listing no longer
contains the part of the pseudo-assembler listing that was associated with OPT(1).
Listing formats, especially the pseudo-assembler parts, will continue to change from
release to release. Do not build dependencies on the structure or content of
listings. For information about listings for the current release, refer to the z/OS
C/C++ User’s Guide.

From Pre-OS/390 Releases to z/OS V1R1

60 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

Chapter 11. Input and Output Operations Compatibility

Changes were made to input and output support in the C/370 V2R2 and LE/370
Release 3 libraries. These changes also apply to z/OS Language Environment
V1R1. If your programs performed input and output operations with the following
products, you should read the changes listed in this section. These products are:

v LE/370 V1R1

v LE/370 V1R2

References in this chapter to previous releases or previous behavior apply to the
products listed above.

You will generally be able to migrate “well-behaved” programs: programs that do not
rely on undocumented behavior, restrictions, or invalid behaviors of previous
releases. For example, if library documentation only specified that a return code
was a negative value, and your code relies on that value being -3, your code is not
well-behaved and is relying on undocumented behavior.

Another example of a program that is not well-behaved is one that specifies
recfm=F for a terminal file and depends on Language Environment to ignore this
parameter, as it did previously.

However, you may still need to change even well-behaved code under
circumstances described in the following section.

Opening Files
v When you call the fopen() or freopen() library function, you can specify each

parameter only once. If you specify any keyword parameter in the mode string
more than once, the function call fails. Previously, you could specify more than
one instance of a parameter.

v The library no longer supports uppercase open modes on calls to fopen() or
freopen(). You must specify, for example, rb instead of RB, to conform to the
ANSI/ISO standard.

v You cannot open a non-HFS file more than once for a write operation. Previous
releases allowed you, in some cases, to open a file for write more than once. For
example, you could open a file by its data set name and then again by its
ddname. This is no longer possible for non-HFS files, and is not supported.

v Previously, fopen() allowed spaces and commas as delimiters for mode string
parameters. Only commas are allowed now.

v If you are using PDSes or PDSEs, you cannot specify any spaces before the
member name.

Writing to Files
v Write operations to files opened in binary mode are no longer deferred.

Previously, the library did not write a block that held nn bytes out to the system
until the user wrote nn+1 bytes to the block. The z/OS Language Environment
library follows the rules for full buffering, described in z/OS C/C++ Programming
Guide, and writes data as soon as the block is full. The nn bytes are still written
to the file, the only difference is in the timing of when it is done.

v For non-terminal files, the backspace character ('\b') is now placed into files as
is. Previously, it backed up the file position to the beginning of the line.

© Copyright IBM Corp. 1996, 2001 61

v For all text I/O, truncation for fwrite() is now handled the same way that it is
handled for puts() and fputs(). If you write more data than a record can hold,
and your output data contains any of the terminating control characters, '\n' or
'\r' (or '\f', if you are using ASA), the library still truncates extra data;
however, recognizing that the text line is complete, the library writes subsequent
data to the next record boundary. Previously, fwrite() stopped immediately after
the library began truncating data, so that you had to add a control character
before writing any more data.

v You can now partially update a record in a file opened with type=record.
Previous libraries returned an error if you tried to make a partial update to a
record. Now, a record is updated up to the number of characters you specify, and
the remaining characters are untouched. The next update is to the next record.

v z/OS Language Environment blocks files more efficiently than some previous
libraries did. Applications that depend on the creation of short blocks may fail.

v The behavior of ASA files when you close them has changed. In previous
releases, this is what happened:

Written to file Read from file after fclose(), fopen()

abc\n\n\n abc\n\n\n\n

abc\n\n abc\n\n\n

abc\n abc\n

In this release, you read from the file what you wrote to it. For example:

Written to file Read from file after fclose(), fopen()

abc\n\n\n abc\n\n\n

abc\n\n abc\n\n

abc\n abc\n

In previous products, writing a single new-line character to a new file created an
empty file under MVS. z/OS Language Environment treats a single new-line
characters written to a new file as a special case, because it is the last new-line
character of the file. The library writes a single blank to the file. When you read
this file, you see two new-line characters instead of one. You also see two
new-line characters on a read if you have written two new-line characters to the
file.

The behavior of appending to ASA files has also changed. The following table
shows what you get from an ASA file when you:

1. Open an ASA file for write.

2. Write abc.

3. Close the file.

4. Append xyz to the ASA file.

5. Open the same ASA file for read.

Table 7. Appending to ASA Files

abc Written to File, fclose()
then append xyz

What You Read from File after fclose(), fopen()

Previous release New release

abc ⇒ xyz \nabc\nxyz\n same as previous release

From Pre-OS/390 Releases to z/OS V1R1

62 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

Table 7. Appending to ASA Files (continued)

abc Written to File, fclose()
then append xyz

What You Read from File after fclose(), fopen()

Previous release New release

abc ⇒ \nxyz \nabc\nxyz\n \nabc\n\nxyz\n

abc ⇒ \rxyz \nabc\rxyz\n \nabc\n\rxyz\n

abc\n ⇒ xyz \nabc\nxyz\n same as previous release

abc\n ⇒ \nxyz \nabc\nxyz\n \nabc\n\nxyz\n

abc\n ⇒ \rxyz \nabc\rxyz\n \nabc\n\rxyz\n

abc\n\n ⇒ xyz \nabc\n\n\nxyz\n \nabc\n\nxyz\n

abc\n\n ⇒ \nxyz \nabc\n\n\nxyz\n same as previous release

abc\n\n ⇒ \rxyz \nabc\n\n\rxyz\n same as previous release

v The behavior of DBCS strings has changed.

1. I/O now checks the value of MB_CUR_MAX to determine whether to interpret
DBCS characters within a file.

2. When MB_CUR_MAX is 4, you can no longer place control characters in the
middle of output DBCS strings for interpretation. Control characters within
DBCS strings are treated as DBCS data. This is true for terminals as well.
Previous products split the DBCS string at the '\n' (new-line) control
character position by adding an SI (Shift In) control character at the new-line
position, displaying the line on the terminal, and then adding an SO (Shift Out)
control character before the data following the new-line character. If
MB_CUR_MAX is 1, the library interprets control characters within any string, but
does not interpret DBCS strings. SO and SI characters are treated as ordinary
characters.

3. When you are writing DBCS data to text files, if there are multiple SO (Shift
Out) control-character write operations with no intervening SI (Shift In) control
character, the library discards the SO characters, and marks that a truncation
error has occurred. Previous products allowed multiple SO control-character
write operations with no intervening SI control character without issuing an
error condition.

4. When you are writing DBCS data to text files and specify an odd number of
DBCS bytes before an SI control character, the last DBCS character is
padded with a X'FE' byte. If a SIGIOERR handler exists, it is triggered.
Previous products allowed incorrectly placed SI control-character write
operations to complete without any indication of an error.

5. Now, when an SO has been issued to indicate the beginning of a DBCS string
within a text file, the DBCS must terminate within the record. The record will
have both an SO and an SI.

Repositioning within Files
v The behavior of fgetpos(), fseek() and fflush() following a call to ungetc()

has changed. Previously, these functions have all ignored characters pushed
back by ungetc() and have considered the file to be at the position where the
first ungetc() character was pushed back. Also, ftell() acknowledged
characters pushed back by ungetc() by backing up one position if there was a
character pushed back. Now,

– fgetpos() behaves just as ftell()does

From Pre-OS/390 Releases to z/OS V1R1

Chapter 11. Input and Output Operations Compatibility 63

– When a seek from the current position (SEEK_CUR) is performed, fseek()
accounts for any ungetc() character before moving, using the user-supplied
offset

– fflush() moves the position back one character for every character that was
pushed back.

If you have applications that depend on the previous behavior of fgetpos(),
fseek(), or fflush(), you may use the new _EDC_COMPAT environment variable so
thatsource code need not change to compensate for the new behavior.
_EDC_COMPAT is described in z/OS C/C++ Programming Guide.

v For OS I/O to and from files opened in text mode, the ftell() encoding system
now supports higher blocking factors for smaller block sizes. In general, you
should not rely on ftell() values generated by code you developed using
previous releases of the library. You can try ftell() values taken in previous
releases for files opened in text or binary format if you set the environment
variable _EDC_COMPAT before you call fopen() or freopen(). Do not rely on
ftell() values saved across program boundaries. _EDC_COMPAT is described in
z/OS C/C++ Programming Guide.

v For record I/O, ftell() now returns the relative record number instead of an
encoded offset from the beginning of the file. You can supply the relative record
number without acquiring it from ftell(). You cannot use old ftell() values for
record I/O, regardless of the setting of _EDC_COMPAT. _EDC_COMPAT is described in
z/OS C/C++ Programming Guide .

v If you have used ungetc() to move the file pointer to a position before the
beginning of the file, calls to ftell() and fgetpos() now fail. Previously, ftell()
returned the value 0 for such calls, but set errno to a non-zero value. Previously,
fgetpos() did not account for ungetc() calls. See z/OS C/C++ Programming
Guide for information on how to change fgetpos() behavior by using
_EDC_COMPAT.

For example, suppose that you are at relative position 1 in the file and ungetc()
is performed twice. ftell() and fgetpos() will now report the relative position -1,
which is before the start of the file, causing both ftell() and fgetpos() to fail.

v After you have called ftell(), calls to setbuf() or setvbuf() may fail.
Applications should never call I/O functions between calls to fopen() or
freopen() and calls to the functions that control buffering.

Closing and Reopening ASA Files
The behavior of ASA files when you close and reopen them is now consistent:

Table 8. Closing and Reopening ASA Files

Written to file

Physical record after close

Previous behavior New behavior

abc Char abc (1) same as previous release

Hex 4888
0123

(1)

abc\n Char abc (1) same as previous release

Hex 4888
0123

(1)

From Pre-OS/390 Releases to z/OS V1R1

64 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

Table 8. Closing and Reopening ASA Files (continued)

Written to file

Physical record after close

Previous behavior New behavior

abc\n\n Char abc
0

(1)
(2)

Char abc (1)
(2)

Hex 4888
0123
F
0

(1)

(2)

Hex 4888
0123
4
0

(1)

(2)

abc\n\n\n Char abc
-

(1)
(2)

Char abc (1)
(2)

Hex 4888
0123
6
0

(1)

(2)

Hex 4888
0123
4
0

(1)
(2)

abc\r Char abc
+

(1)
(2)

same as previous release

Hex 4888
0123
4
E

(1)

(2)

abc\f Char abc
1

(1)
(2)

same as previous release

Hex 4888
0123
F
1

(1)

(2)

fldata() Return Values
There are minor changes to the values that the fldata() library function returns. It
may now return more specific information in some fields. For more information on
fldata(), see the “Input and Output” section in z/OS C/C++ Programming Guide.

Error Handling
The general return code for errors is now EOF. In previous products, some I/O
functions returned 1 as an error code to indicate failure. This caused some
confusion, as 1 is a possible errno value as well as a return code. EOF is not a valid
errno value.

Programs that rely on specific values of errno may not run as expected, because
certain errno values have changed. Starting with OS/390 Language Environment
V1R5, error messages have the format EDC5xxx. You can find the error message
information for a particular errno value by applying the errno value to EDC5xxx (for
example, 021 becomes EDC5021), and looking up the EDC5xxx message in z/OS
Language Environment Debugging Guide manual.

From Pre-OS/390 Releases to z/OS V1R1

Chapter 11. Input and Output Operations Compatibility 65

Miscellaneous
v The inheritance model for standard streams now supports repositioning.

Previously, if you opened stdout or stderr in update mode, and then called
another C program by using the ANSI-style system() function, the program that
you called inherited the standard streams, but moved the file position for stdout
or stderr to the end of the file. Now, the library does not move the file position to
the end of the file. For text files, the position is moved only to the nearest record
boundary not before the current position. This is consistent with the way stdin
behaves for text files.

v The values for L_tmpnam and FILENAME_MAX have been changed:

Constant Old values New values

L_tmpnam 47 1024

FILENAME_MAX 57 1024

v The names produced by the tmpnam() library function are now different. Any code
that depends on the internal structure of these names may fail.

VSAM I/O Changes
v The library no longer appends an index key when you read from an RRDS file

opened in text or binary mode.

v RRDS files opened in text or binary mode no longer support setting the access
direction to BWD.

Terminal I/O Changes
v The library will now use the actual recfm and lrecl specified in the fopen() or

freopen() call that opens a terminal file. Incomplete new records in fixed binary
and record files are padded with blank characters until they are full, and the
__recfmF flag is set in the fldata() structure.

Previously, MVS terminals unconditionally set recfm=U. Terminal I/O did not
support opening files in fixed format.

v The use of an LRECL value in the fopen() or freopen() call that opens a file sets
the record length to the value specified.

Previous releases unconditionally set the record length to the default values.

v The use of a RECFM value in the fopen() or freopen() call that opens a file sets
the record format to the value specified.

Previous releases unconditionally set the record format to the default values.

v For input text terminals, an input record now has an implicit logical record
boundary at LRECL if the size of the record exceeds LRECL. The character data in
excess of LRECL is discarded, and a '\n' (new-line) character is added at the end
of the record boundary. You can now explicitly set the record length of a file as a
parameter on the fopen() call.

The old behavior was to allow input text records to span multiple LRECL blocks.

v Binary and record input terminals now flag an end-of-file condition with an empty
input record. You can clear the EOF condition by using the rewind() or
clearerr() library function.

Previous products did not allow these terminal types to signal an end-of-file
condition.

From Pre-OS/390 Releases to z/OS V1R1

66 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

v When an input terminal requires input from the system, all output terminals with
unwritten data are flushed in a way that groups the data from the different open
terminals together, each separated from the other with a single blank character.

The old behavior is equivalent to the new behavior, except that two blank
characters separate the data from each output terminal.

From Pre-OS/390 Releases to z/OS V1R1

Chapter 11. Input and Output Operations Compatibility 67

From Pre-OS/390 Releases to z/OS V1R1

68 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

Part 4. From OS/390 C/C++ to z/OS V1R1 C/C++

This part discusses the implications of migrating applications that were created with
one of the following compilers and one of the following libraries to the z/OS V1R1
C/C++ product.

Compilers:

v IBM OS/390 C/C++ V1R2 compiler, 5645-001

v IBM OS/390 C/C++ V1R3 compiler, 5645-001

v IBM OS/390 C/C++ V2R4 compiler, 5647-A01

v IBM OS/390 C/C++ V2R6 compiler, 5647-A01

v IBM OS/390 C/C++ V2R9 compiler, 5647-A01

Libraries:

v OS/390 V1R2 Language Environment, 5645-001

v OS/390 V1R3 Language Environment, 5645-001

v OS/390 V2R4 Language Environment, 5647-A01

v OS/390 V2R5 Language Environment, 5647-A01

v OS/390 V2R6 Language Environment, 5647-A01

v OS/390 V2R7 Language Environment, 5647-A01

v OS/390 V2R8 Language Environment, 5647-A01

v OS/390 V2R9 Language Environment, 5647-A01

Notes:

1. The z/OS V1R1 compiler and library are equivalent to the OS/390 V2R10
compiler and library.

2. The OS/390 V1R1 compiler and library were equivalent to the final MVS/ESA
compiler and library.

© Copyright IBM Corp. 1996, 2001 69

|
|

70 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

Chapter 12. Changes Between Releases of OS/390 C/C++

This chapter describes the changes you may need to make if you are migrating
from a previous release of OS/390 C/C++ to z/OS V1R1 C/C++.

Compiler

Memory Consideration
Memory requirements for compilation may increase for successive releases as new
logic is added. If you cannot recompile an application that you successfully
compiled with a previous release of the compiler, try increasing the region size.

Removal of Model Tool Support
As of OS/390 V2R10, the Model Tool is no longer available.

Pragma reachable and leaves
These pragmas help the optimizer in moving code around the function call site
when exploring opportunities for optimization. Since the addition of these pragmas
in OS/390 V2R9, the optimizer is now more aggressive. Functions that exhibit the
leave and reachable properties must be identified by these pragmas.

The C run-time library functions setjmp and longjmp (and the related sigsetjmp,
siglongjmp, and so on) are such functions.

If your version of setjmp.h does not include these pragmas, you should add them
to your program code as follows:
#pragma leaves (longjmp, _longjmp, siglongjmp)
#pragma reachable (setjmp, _setjmp, sigsetjmp)

Alternatively, if the functions refer to the C run-time library provided by the system
(or another library that strictly conforms to the C standard), you can turn on the
LIBANSI option.

For more information on using #pragma reachable and #pragma leaves, refer to
z/OS C/C++ Language Reference.

Reentrant Variables
In previous releases of the compiler, #pragma variable (name, RENT) had no effect
if the compiler option was NORENT. As of OS/390 V2R9, a variable can be
reentrant even if the compiler option is NORENT.

This change may cause some programs that compiled and linked successfully in
previous releases to fail during link-edit in the current release. This applies if all of
the following are true:

v The program is written in C and compiled with the NORENT option

v At least one variable is reentrant

v The program is compiled and linked using the following JCL procedures with the
output directed to a non-PDSE: EDCCL, EDCCLG, EDCL, and EDCLG.

If the output data set is non-PDSE, you need the prelinker. The following JCL
procedures use the prelinker: EDCCPL, EDCCPLG, EDCPL, and EDCPLG.

© Copyright IBM Corp. 1996, 2001 71

In previous releases, #pragma variable (name, NORENT) was ignored for static
variables. As of OS/390 V2R10, this pragma is accepted if the ROCONST option is
turned on and the variable is const qualified.

Compiler Options

ARCHITECTURE Option
As of OS/390 V2R10, the default value of the ARCHITECTURE compiler option is
2. In previous releases, it was 0.

Removal of SOM-Related Options
The following SOM-related compiler options are no longer supported:

v SOM | NOSOM

v SOMEinit | NOSOMEinit

v SOMGs | NOSOMGs

v SOMRo | NOSOMRo

v SOMVolattr | NOSOMVolattr

v XSominc | NOXSominc

Removal of IDL Compile-Time Option
As of OS/390 V2R4 C/C++, the IDL compiler option is no longer available. If you
continue to require IDL for your applications, new IDL or IDL modifications must be
coded by hand. You can then use the IDL compiler to generate your C/C++ source
code.

OPTIMIZE Compile-Time Option
In the OS/390 C/C++ V1R2, V1R3, and V2R4 compilers:

v OPT(0) mapped to NOOPT

v OPT and OPT(1) mapped to OPT(1)

v OPT(2) mapped to OPT(2)

Starting with the OS/390 V2R6 C/C++ compiler:

v OPT(0) maps to NOOPT

v OPT, OPT(1) and OPT(2) map to OPT(2)

TARGET (OS) Option
The TARGET option now supports the following operating system levels: OSV1R2,
OSV1R3, OSV2R4, OSV2R5, OSV2R6, OSV2R7, OSV2R8, OSV2R9, and
OSV2R10. This allows you to compile an application using the current compiler, and
then link and run the application on a lower level system. Refer to z/OS C/C++
User’s Guide for details.

Interprocedural Analysis

IPA Object Module Binary Compatibility
Release-to-release binary compatibility is maintained by the z/OS C/C++ IPA
Compile and IPA Link as follows:

v An object file produced by an IPA Compile which contains IPA Object or
combined IPA and conventional object information can be used as input to the
IPA Link of the same or later Version/Release.

From Previous Releases of OS/390 C/C++ to z/OS V1R1 C/C++

72 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

v An object file produced by an IPA Compile which contains IPA Object or
combined IPA and conventional object information cannot be used as input by
the IPA Link of an earlier Version/Release. If this is attempted, an error diagnostic
message will be issued by the IPA Link.

v Note that if the IPA object is recompiled by a later IPA Compile, additional
optimizations may be performed and the resulting application program may
perform better.

An exception to this is the IPA object files produced by the OS/390 Release 2 C IPA
Compile. These must by recompiled from the program source using an OS/390
V1R3 or later compiler before attempting to process them with the z/OS V1R1
C/C++ IPA Link.

IPA Link Step Defaults
Starting with OS/390 C/C++ V1R3, the following IPA Link step defaults changed:

v The default optimization level is OPT(1)

v The default is INLINE, unless NOOPT, OPT(0) or NOINLINE is specified.

v The default inlining threshold is now 1000 ACUs. With OS/390 C/C++ V1R2, the
threshold was 100 ACUs.

v The default expansion threshold is now 8000 ACUs. With OS/390 C/C++ V1R2,
the threshold was 1000 ACUs.

Starting with OS/390 C/C++ V2R6, the default optimization level for the IPA Link
step is OPT(2).

Data Types

Floating Point Type to Integer Conversion
Consider the following piece of code where a floating point type is converted to a
signed integer type:

double x;
int i;
/* ... */

i = x; /* overflow if x is too large */
/* value of i undefined */

When the conversion causes an overflow (that is, the floating type value is larger
than INT_MAX), the behavior is undefined according to the C Standard.

The actual result depends on the ARCHITECTURE level (the ARCH option), which
determines the machine instruction used to do the conversion. For example, there
are input values that would result in a large negative value for ARCH(2) and below,
while the same input would result in a large positive value for ARCH(3) and above.

If overflow processing is important to the program, it should be checked explicitly.
For example:
double x;
int i;
if (x < (double) INT_MAX) i = x;
else {
/* overflow */
}

From Previous Releases of OS/390 C/C++ to z/OS V1R1 C/C++

Chapter 12. Changes Between Releases of OS/390 C/C++ 73

Long Long Data Type
As of OS/390 V2R9, the C/C++ compiler and Language Environment support long
long data types. The _LONG_LONG macro is predefined for all language levels
other than ANSI.

In previous releases of the compiler, some users defined their own _LONG_LONG
macro. If you want your code to be portable, you should remove this user-defined
macro before compiling a program under V1R1.

Language Environment

Name Conflicts with Run-Time Library Functions
When taking code previously compiled and link-edited on a system below OS/390
V2R4, and moving to a system at OS/390 V2R4 or later, you might have a problem
with name conflicts if both the following are true:

1. You created functions with the same name as library functions.

2. When linking your application you included the IBM supplied Language
Environment link library before the files that contain your function definitions.

Previous releases of the OS/390 C/C++ run-time headers used the #pragma map
directive to convert many function names into identifiers prefixed with “@@”. For
example, if you included fcntl.h in your source, a reference to open() in your
source code resulted in an external name @@OPEN in the object code. Starting with
OS/390 V2R4 many pragma maps have been eliminated. If you created functions
with the same name as library functions, you must ensure that the file containing
your version of the function precedes the IBM supplied Language Environment link
library in the search order when linking your application. If you have object modules
containing identifiers like OPEN that you want resolved to your version of open(), you
may need to alter your JCL to ensure that your version precedes the IBM supplied
Language Environment link library in the search order.

Also, if you have multiple, interdependent modules that rely on the name mapping
present in prior releases, you cannot recompile one without recompiling the others.
For example, module A includes fcntl.h and calls open() resulting in a reference to
@@OPEN in the object code. Module B implements your version of open() and also
includes fcntl.h, so that the external name of the called function is mapped to
@@OPEN. You must recompile both modules.

Table 9 lists the functions that had pragma maps deleted in OS/390 V2R4.

Table 9. Functions That Had Pragma Maps Deleted
____loc1() __atoe() __atoe_l() __cnvblk() __dlght()
__etoa() __etoa_l() __gderr() __getipc() __ipdbcs()
__ipdspx() __iphost() __ipmsgc() __ipnode() __iptcpn()
__opargf() __operrf() __opindf() __opoptf() __sigerr()
__sigign() __sigpro() __tzone() __wsinit() _longjmp()
_setjmp() _tolower() _toupper() accept() access()
alarm() a64l() basename() bcmp() bcopy()
bind() brk() bzero() catclose() catgets()
catopen() cclass() chaudit() chdir() chmod()
chown() chroot() clearenv() clearenv() close()
closedir() closelog() clrmemf() confstr() connect()
creat() crypt() ctdli() ctdli() ctermid()
ctermid() cuserid() cuserid() dirname() drand48()

From Previous Releases of OS/390 C/C++ to z/OS V1R1 C/C++

74 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

Table 9. Functions That Had Pragma Maps Deleted (continued)
dup() dup2() dynalloc() dynfree() ecvt()
encrypt() endgrent() endpwent() erand48() execl()
execle() execlp() execv() execve() execvp()
fattach() fchaudit() fchdir() fchmod() fcntl()
fcvt() fdelrec() fdetach() fetch() fetchep()
ffs() fileno() fldata() flocate() fmtmsg()
fnmatch() fork() fstat() fstatvfs() ftime()
ftok() ftw() fupdate() gcsp() gcvt()
getcwd() getdate() getegid() geteuid() getgid()
getgrent() getgrgid() getgrnam() getmsg() getopt()
getopt() getpass() getpgid() getpgrp() getpid()
getpmsg() getppid() getpwent() getpwnam() getpwuid()
getsid() getsyntx() getuid() getutxid() getw()
getwd() glob() globfree() grantpt() hcreate()
hdestroy() hsearch() iconv() index() insque()
ioctl() ioctl() isatty() isnan() jrand48()
kill() killpg() lchown() lcong48() lfind()
link() listen() lockf() lrand48() lsearch()
lseek() lstat() l64a() maxcoll() maxdesc()
memccpy() mkdir() mkfifo() mkstemp() mktemp()
mmap() mount() mprotect() mrand48() msgctl()
msgget() msgrcv() msgsnd() msgxrcv() msync()
munmap() nftw() nice() nlist() nrand48()
open() opendir() openlog() pathconf() pause()
pclose() pipe() poll() popen() ptsname()
putenv() putmsg() putpmsg() putw() random()
re_comp() re_exec() read() readdir() readv()
realpath() recv() recvfrom() regcmp() regcomp()
regerror() regex() regexec() regfree() release()
remque() rexec() rindex() rmdir() sbrk()
scalb() seed48() seekdir() semctl() semget()
semop() send() sendto() setegid() setenv()
setenv() seteuid() setgid() setgrent() setkey()
setpeer() setpgid() setpgrp() setpwent() setregid()
setreuid() setsid() setstate() setuid() shmat()
shmctl() shmdt() shmget() shutdown() sighold()
sigpause() sigrelse() sigset() sigstack() sigwait()
sleep() socket() spawn() spawnp() srandom()
srand48() stat() statvfs() strdup() strfmon()
strptime() svc99() swab() sync() sysconf()
syslog() t_accept() t_alloc() t_bind() t_close()
t_error() t_free() t_listen() t_look() t_open()
t_rcv() t_rcvdis() t_rcvrel() t_snd() t_snddis()
t_sndrel() t_sync() t_unbind() tcdrain() tcflow()
tcflush() tcgetsid() tdelete() telldir() tempnam()
tfind() times() tinit() truncate() tsearch()
tsetsubt() tsyncro() tterm() ttyname() ttyslot()
twalk() tzset() ualarm() ulimit() umask()
umount() uname() unlink() unlockpt() usleep()
utime() utimes() utimes() valloc() vfork()
w_ioctl() w_statfs() wait() waitid() waitpid()
wait3() wordexp() wordfree() write() writev()

From Previous Releases of OS/390 C/C++ to z/OS V1R1 C/C++

Chapter 12. Changes Between Releases of OS/390 C/C++ 75

Time Functions
You should customize your locale information. Otherwise, in rare cases, you may
encounter errors. In a POSIX application, you can supply time zone and alternative
time (e.g., daylight) information with the TZ environment variable. In a non-POSIX
application, you can supply this information with the _TZ environment variable. If no
TZ environment variable is defined for a POSIX application or no _TZ environment
variable is defined for a non-POSIX application, any customized information
provided by the LC_TOD locale category is used. By setting the TZ environment
variable for a POSIX application, or the _TZ environment variable for a non-POSIX
application, or by providing customized time zone or daylight information in an
LC_TOD locale category, you allow the time functions to preserve both time and date,
correctly adjusting for alternative time on a given date.

Refer to z/OS C/C++ Programming Guide for more information about both
environment variables and customizing a locale.

Direct UCS-2 and UTF-8 Converters
OS/390 V2R9 added new UCS-2 and UTF-8 converters. These are direct
conversions that no longer use the tables built by the uconvdef utility processing of
UCMAPS. If you have modified UCMAPS, UCS-2 and UTF-8 converters will no longer
use those modified UCMAPS. If you still need to use the modifications that you made
to UCMAPS, you will now need to set the _ICONV_UCS environment variable to "O".
Refer to z/OS C/C++ Programming Guide for more information about the
_ICONV_UCS environment variable.

Default Option for ABTERMENC Changed to ABEND
As of OS/390 V2R9 the default option for ABTERMENC is ABEND instead of RETCODE. If
you are expecting the default behavior of ABTERMENC to be RETCODE, you must
change the setting in CEEDOPT (CEECOPT for CICS). Refer to z/OS Language
Environment Customization for details on changing CEEDOPT and CEECOPT.

THREADSTACK Run-Time Option
As of OS/390 V2R10 the new THREADSTACK run-time option replaces the
NONIPTSTACK and NONONIPTSTACK options. The old options will still be accepted, but
an information message will be issued, telling the user to switch to the new
THREADSTACK option. The old options do not have support for specifying the initial
and increment sizes of the new XPLINK downward growing stack. Refer to z/OS
Language Environment Customization for more information on the THREADSTACK
run-time option.

Class Library

Removal of SOM® Support
As of OS/390 V2R10, the IBM System Object Model™ (SOM) is no longer
supported in the C++ compiler and the IBM Open Class™ Library. The
SOM-enabled class library DLLs have been stabilized at the OS/390 V2R9 level
and continue to be shipped as a run-time environment only.

Removal of Database Access Class Library Utility
Starting with OS/390 V2R4 C/C++, the Database Access Class Library utility is no
longer available.

From Previous Releases of OS/390 C/C++ to z/OS V1R1 C/C++

76 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

Part 5. Appendixes

© Copyright IBM Corp. 1996, 2001 77

78 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

Appendix. Class Library Migration Considerations

This appendix provides some background information on the types of class libraries
that are available with the C++/MVS V3 and z/OS C/C++ compilers.

The following four class libraries are available for use with the z/OS C++ compilers,
beginning with the C++/MVS V3R1M0 compiler:

v I/O Stream Class Library

v Complex Mathematics Class Library

v Application Support Class Library

v Collection Class Library

The C++/MVS V3R2 compiler introduced the Database Access Class Library Utility,
which was removed in OS/390 V2R4.

The I/O Stream, Complex Mathematics Class, Application Support Class, and
Collection Class libraries are offered in native C++ versions only. All libraries are
available in both statically bindable and dynamically bindable forms.

In previous releases, the Application Support Class library and the Collection Class
library were also offered in SOM versions. Starting with OS/390 V2R10, these
SOM-enabled class libraries have been removed. The SOM-enabled class library
DLLs have been stabilized at the V2R9 level and continue to be shipped as a
run-time environment only.

In native C++ class libraries, references to methods are dependent upon the order
of the method entries in a virtual function table. When new methods are added to a
library, the order of the methods can change, and therefore existing applications
using those methods may no longer work. Between releases or modification levels,
migration impacts may also occur if there are changes to the interfaces or
semantics of existing functions within a class library.

Whether an application is statically or dynamically bound to a class library will also
determine whether or not there are executable incompatibilities. Statically-bound
applications do not usually encounter release-to-release executable incompatibilities
unless they are recompiled/relinked from source or relinked from objects with the
new release. Dynamically-bound applications, however, may encounter
release-to-release executable incompatibilities. Source and object incompatibilities
may occur regardless of whether an application is statically or dynamically bound.

For more information on the topics mentioned above, refer to the following:

v OS/390 C/C++ IBM Open Class Library User’s Guide

v OS/390 C/C++ IBM Open Class Library Reference

v The "Building and Using Dynamic Link Libraries" chapter in the z/OS C/C++
Programming Guide (for information on dynamic linking)

v z/OS C/C++ User’s Guide (for information on static linking)

© Copyright IBM Corp. 1996, 2001 79

80 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OR CONDITIONS OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express
or implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2001 81

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

Lab Director
IBM Canada Ltd.
1150 Eglinton Avenue East
Toronto, Ontario M3C 1H7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on the z/OS operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This publication documents intended Programming Interfaces that allow the
customer to write z/OS C/C++ programs.

Trademarks
The following terms are trademarks of International Business Machines Corporation
in the United States or other countries or both:

AD/Cycle C/370 C/MVS
C++/MVS CICS CICS/ESA
IBM IMS IMS/ESA
Language Environment MVS MVS/ESA
Open Class OpenEdition OS/390

82 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

S/370 S/390 SOM
System/370 System Object Model z/OS

Other company, product, and service names may be trademarks or service marks
of others.

Notices 83

84 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

Bibliography

This bibliography lists the publications for IBM products that are related to the z/OS
C/C++ product. It includes publications covering the application programming task.
The bibliography is not a comprehensive list of the publications for these products,
however, it should be adequate for most z/OS C/C++ users. Refer to z/OS
Information Roadmap, SA22-7500, for a complete list of publications belonging to
the z/OS product.

Related publications not listed in this section can be found on the IBM Online
Library Omnibus Edition MVS Collection, SK2T-0710, the IBM Online Library
Omnibus Edition z/OS Collection, SK2T-6700, or on a tape available with z/OS.

z/OS
v z/OS Introduction and Release Guide, GA22-7502

v z/OS Planning for Installation, GA22-7504

v z/OS Summary of Message Changes, SA22-7505

v z/OS Information Roadmap, SA22-7500

z/OS C/C++
v z/OS C/C++ Programming Guide, SC09-4765

v z/OS C/C++ User’s Guide, SC09-4767

v z/OS C/C++ Language Reference, SC09-4764

v z/OS C/C++ Run-Time Library Reference, SA22-7821

v z/OS C Curses, SA22-7820

v z/OS C/C++ Compiler and Run-Time Migration Guide, SC09-4763

v z/OS C/C++ Reference Summary, SX09-1319

v OS/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363

v OS/390 C/C++ IBM Open Class Library Reference, SC09-2364

v Debug Tool User’s Guide and Reference, SC09-2137

z/OS Language Environment
v z/OS Language Environment Concepts Guide, SA22-7567

v z/OS Language Environment Customization, SA22-7564

v z/OS Language Environment Debugging Guide, GA22-7560

v z/OS Language Environment Programming Guide, SA22-7561

v z/OS Language Environment Programming Reference, SA22-7562

v z/OS Language Environment Run-Time Migration Guide, GA22-7565

v z/OS Language Environment Writing Interlanguage Applications, SA22-7563

Assembler
v HLASM Language Reference, SC26-4940

v HLASM Programmer’s Guide, SC26-4941

© Copyright IBM Corp. 1996, 2001 85

COBOL
v COBOL for OS/390 & VM Compiler and Run-Time Migration Guide, GC26-4764

v Programming Guide, SC26-9049

v Language Reference, SC26-9046

v Diagnosis Guide, GC26-9047

v Licensed Program Specifications, GC26-9044

v Installation and Customization under z/OS, GC26-9045

v Millenium Language Extensions, GC26-9266

PL/I
v PL/I for MVS & VM Language Reference, SC26-3114

v PL/I for MVS & VM Programming Guide, SC26-3113

v PL/I for MVS & VM Compiler and Run-Time Migration Guide, SC26-3118

VS FORTRAN
v Language and Library Reference, SC26-4221

v Programming Guide, SC26-4222

CICS
v CICS Application Programming Guide, SC34-5702

v CICS Application Programming Reference, SC34-5703

v CICS Distributed Transaction Programming Guide, SC34-5708

v CICS Front End Programming Interface User’s Guide, SC34-5710

v CICS Messages and Codes, GC33-5716

v CICS Resource Definition Guide, SC34-5722

v CICS System Definition Guide, SC34-5725

v CICS System Programming Reference, SC34-5726

v CICS User’s Handbook, SX33-6116

v CICS Family: Client/Server Programming, SC34-1435

v CICS Transaction Server for OS/390 Migration Guide, GC34-5699

v CICS Transaction Server for OS/390 Release Guide, GC34-5701

v CICS Transaction Server for OS/390: Planning for Installation, GC34-5700

DB2
v DB2 Administration Guide, SC26-8957

v DB2 Application Programming and SQL Guide, SC26-8958

v DB2 Call Level Interface Guide and Reference, SC26-8959

v DB2 Command Reference, SC26-8960

v DB2 Data Sharing: Planning and Administration, SC26-8961

v DB2 Installation Guide, GC26-8970

v DB2 Messages and Codes, GC26-8979

v DB2 Reference for Remote DRDA Requesters and Servers, SC26-8964

v DB2 SQL Reference, SC26-8966

v DB2 Utility Guide and Reference, SC26-8967

86 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

IMS/ESA
v IMS/ESA Application Programming: Design Guide, SC26-8728

v IMS/ESA Application Programming: Transaction Manager, SC26-8729

v IMS/ESA Application Programming: Database Manager, SC26-8727

v IMS/ESA Application Programming: EXEC DLI Commands for CICS and IMS,
SC26-8726

QMF
v Introducing QMF, GC26-9576

v Using QMF, SC26-9578

v Developing QMF Applications, SC26-9579

v Reference, SC26-9577

v Installing and Managing QMF on MVS, SC26-9575

v Messages and Codes, SC26-9580

DFSMS
v z/OS DFSMS Introduction, SC26-7397

v z/OS DFSMS: Managing Catalogs, SC26-7409

v z/OS DFSMS: Using Data Sets, SC26-7410

v z/OS DFSMS Macro Instructions for Data Sets, SC26-7408

v z/OS DFSMS Access Method Services, SC26-7394

v z/OS DFSMS Program Management, SC27-1130

Bibliography 87

88 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

INDEX

Special Characters
__librel() 22
#line directive 21, 52
_packed 54
_Packed structures 23, 53
_Packed unions 23, 53
_VSAM_OPEN_AIX_PATH macro 27
_VSAM_OPEN_ESDS_PATH macro 27
_VSAM_OPEN_KSDS_PATH macro 27

A
abnormal termination 33, 56
abort() function 36
ABTERMENC default option 76
ANSI

LANGLVL(ANSI) 53
standards 53

ARCHITECTURE compiler option 72
array new 59
ASA files

closing 40, 62
closing and reopening 42, 64
writing to 40, 62

ASM15 routines 20
Assembler interlanguage calls 14
atexit list during abort() 36

C
C/370 V1 to C/370 V2 compiler changes 25
CC command 36, 58
CEEBDATX 58
CEEBLIIA 15
CEEBXITA 21
CEECDATX 58
CEEEV003 22
CEESTART 14, 15
char data type 25
CHECKOUT compile-time option 25
CICS

abend codes and messages 33
and versions of C/370 libraries 33
Application Programmer Interface 34
reason codes 33
standard stream support 34, 59
stderr 34
transient data queue names 34
using HEAP option 34

class library incompatibilities
Application Class

load module 50
object module 55

Collection Class
load module 50
object module 55
source code 53

class library incompatibilities (continued)
IO Stream Class

load module 50
CLISTs, changes affecting 29, 55
COBOL

interlanguage calls 14
library routines 35

code points 23, 53
command-line parameters

passing to a program 30
z/OS Language Environment error handling 30

compatibility
exception handling

from C/370 V1 or V2 33, 56
function argument 26
input/output

from C/370 V1 or V2 39
from pre-OS/390 releases 61

load module
from C/370 V1 or V2 7, 13
from pre-OS/390 releases 49
general information 7

other considerations
AD/Cycle C/370 to z/OS V1R1 C 55, 56
C/370 V1 or V2 compiler to z/OS V1R1 C

compiler 29, 31
C/MVS V3R1 to z/OS V1R1 C 56
from C/370 V1 or V2 29
from pre-OS/390 releases 55
NOOPTIMIZE 32, 56, 72
OPTIMIZE 32, 56, 72

PSW mask
from C/370 V2R1 33
from pre-OS/390 releases 56

source program
C/370 V1 or V2 compiler to z/OS V1R1 C

compiler 19
C/370 V1 to C/370 V2 25
from C/370 V1 19
from C/370 V2 19
general information 9
with AD/Cycle C/370 compiler 51
with C++/MVS compiler 51
with C/MVS compiler 51

System Programming C Facility
C/370 V1 or V2 compiler to z/OS V1R1 C

compiler 19
C/370 V1 or V2 to z/OS Language

Environment 32
compile-time options

CHECKOUT 25
DECK 31
HALT 57
IDL 57, 72
INLINE 31, 57
IPA 72
LANGLVL(ANSI) 53
LSEARCH 32, 57

© Copyright IBM Corp. 1996, 2001 89

compile-time options (continued)
SEARCH 32, 57
TEST 32, 57

conversion overflow 73
CSP (Cross System Product)

CALL 35
DXFR 35
XFER 35

ctest() 13
ctime() 36, 58, 76

D
data types

long long 74
dbx 13
ddnames

SYSERR 29
SYSPRINT 29
SYSTERM 29

Debug Tool 13
decimal overflow exceptions 32, 56
DECK compile-time option 31
DSECT utility 54
dumps 13

E
EDC_COMPAT 8
EDCSTART 14
EDCXV 22
environment variables

_EDC_COMPAT 42, 64
EXECs

CC 36, 58
changes affecting 29, 55

F
fetch() function 20
fetched main programs 21
fetchep() function 20
fflush() 41, 63
fgetpos() 41, 63
fopen() 61
Fortran interlanguage calls 14
freopen() 61
fseek() 41, 63
function return type 21, 52

H
HALT compile-time option 57
HEAP run-time option

default size 31
parameters 31
with CICS 34

hexadecimal numbers 25

I
IBMBLIIA 15
IBMBXITA 21
IDL compile-time option 57, 72
initialization compatibility 15
INLINE compile-time option 31, 57
input/output

ASA files
closing and reopening 42, 64
closing files 40, 62
writing to files 40, 62

closing and reopening files
ASA files 42, 64

closing files
ASA files 40, 62

compatibility 39, 61
error handling 43, 65
file I/O changes 39, 61
FILENAME_MAX 44, 66
fldata() 43, 65
ftell() encoding 42, 64
L_tmpnam 44, 66
opening files 39, 61
repositioning within files 41, 63
standard streams 44, 66
terminal I/O 44, 66
VSAM I/O 44, 66
writing to files

ASA files 40, 62
other considerations 39, 61

interlanguage calls
Assembler 14
COBOL 14
Fortran 14
PL/I 14

ISAINC run-time option 30
isainc with #pragma runopts 32
ISASIZE run-time option 30
isasize with #pragma runopts 32

J
JCL

changes affecting 29, 55
CXX parameter 55

L
LANGLVL(ANSI) compile-time option 53
LANGUAGE run-time option 30
language with #pragma runopts 32
library functions

__librel() 22
abort() 36
ctest() 13
ctime() 36, 58, 76
fetch() 20
fetchep() 20
fflush() 41, 63
fgetpos() 41, 63

90 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

library functions (continued)
fseek() 41, 63
librel 22
localtime() 36, 58, 76
mktime() 36, 58, 76
realloc() 21
release() 20
tmpnam() 44, 66
ungetc() 41, 63

librel function 22
line directive 21, 52
LINK macro 49
listings 37, 60
load modules

compatibility
from C/370 V1 or V2 13
from pre-OS/390 releases 7, 49
initialization 15

converting old executable programs 16
System Programming C Facility 13, 49

localtime() 36, 58, 76
long long data type 74
LSEARCH compile-time option 32, 57

M
macros

_LONG_LONG 74
_VSAM_OPEN_AIX_PATH macro 27
_VSAM_OPEN_ESDS_PATH macro 27
_VSAM_OPEN_KSDS_PATH macro 27
LINK 49

memory requirement 71
messages

contents 29
differences between C/370 and AD/Cycle C/370

V1R2 29
differences between C/370 and Language

Environment 29
differences between C/370 and z/OS Language

Environment 22
differences between C/370 and z/OS V1R1 C 22
differences between compilers 53, 55
direction of messages to stderr 36, 59
perror() 22
prefixes 29
strerror() 22

mktime() 36, 58, 76
Model Tool 71

N
new, array version 59
NOOPTIMIZE compile-time option 32, 56, 72
NOSPIE run-time option 50
NOSTAE run-time option 50
Notices 81
NULL 26

O
opening files 61
OPTIMIZE compile-time option 32, 56, 72
overflow processing 73

P
packed 54
Packed structures 23, 53
Packed unions 23, 53
PDS 39, 61
PDSE 39, 61
perror() 22
PL/I interlanguage calls 14
pointers 26
pragma

chars(signed) 25
comment 25
leaves 71
pack 54
reachable 71
runopts 32
variable 71
wsizeof 21, 52

program mask 20, 51
PSW mask 20, 52

R
realloc() function 21
reentrant variables 71
region size 71
release() function 20
relink requirements

ctest() 13
interlanguage calls with COBOL 14, 17
SPC exception handling 13, 49

REPORT run-time option 30
report with #pragma runopts 32
return codes differences

between C/370 and Language Environment 29
between C/370 and z/OS V1R1 C 22
between compilers 53, 55

Run-time options
ending options list 30
HEAP 31
ISAINC 30
ISASIZE 30
LANGUAGE 30
NOSPIE 50
NOSTAE 50
passing to program 30
REPORT 30
slash (/) 30
SPIE 30, 50
STACK 30
STAE 30, 50
THREADSTACK 76
using with CICS 50

INDEX 91

S
SCEERUN 15, 16
SEARCH compile-time option 32, 57
SIBMLINK 15, 16
SIGFPE 51
SIGFPE exceptions 19
SIGINT 33, 56
sign extension 25
SIGTERM 33, 56
SIGUSR1 33, 56
SIGUSR2 33, 56
sizeof() 21, 52
SOM 72, 76
source program

compatibility 9
with AD/Cycle C/370 compiler 51
with C++/MVS compiler 51
with C/MVS compiler 51

SPIE run-time option 30, 50
spie with #pragma runopts 32
STACK run-time option

default size 30
parameters 31

STAE run-time option 30, 50
stae with #pragma runopts 32
Standards, ANSI 53
stderr 29, 34, 59
strerror() 22
structure declarations used as function parameters 25
SYSERR ddname 29
SYSPRINT ddname 29
System Object Model 72, 76
System Programming C Facility

applications built with EDCXSTRX 22
CEEEV003 22
EDCXV 22
relinking modules 13, 49
source changes 22
with #pragma runopts 32

SYSTERM ddname 29

T
Target 72
TEST compile-time option 57

PATH suboption 32
THREADSTACK run-time option 76

U
UCS-2 converters 76
ungetc()

effect upon behavior of fflush() 41, 63
effect upon behavior of fgetpos() 41, 63
effect upon behavior of fseek() 41, 63

unhandled conditions 33, 56
user exits

CEEBDATX 58
CEEBXITA 21
CEECDATX 58

user exits (continued)
IBMBXITA 21

UTF-8 converters 76

V
variables

reentrant 71

W
wchar_t data type 25
WSIZEOF compiler option 21, 52

92 z/OS V1R1.0 C/C++ Compiler and Run-Time Migration Guide

����

Printed in the United States of America

SC09-4763-00

	Contents
	Part 1. Introduction
	Chapter 1. Locating your Migration Path
	How This Book Is Organized
	A History of Compilers and Libraries

	Chapter 2. Common Questions about Migration
	Will Existing Language Environment Applications Run with z/OSLanguage Environment V1R1?
	Will Existing C/370 Applications Work with z/OS LanguageEnvironment V1R1?
	My Application Does Not Run — Now What?
	I Attempt to Recompile My Application and It Fails — Why?

	Part 2. From C/370 to z/OS V1R1 C/C++
	Chapter 3. Application Executable Program Compatibility
	Input and Output Operations
	Differences Between the C/370 V1 and V2 Compilers
	Executable Programs That Invoke Debug Tool or dbx
	System Programming C Facility (SPC) Executable Programs
	Executable Programs with Interlanguage Calls
	Initialization Compatibility
	IBM C/370 Version 1 and Version 2 Initialization
	z/OS Language Environment Initialization
	z/OS Language Environment Initialization of C/370 ExecutablePrograms
	Special Considerations: CEEBLIIA and IBMBLIIA

	Converting Old Executable Programs to New Executable Programs
	Considerations for Interlanguage Call (ILC) Applications

	Chapter 4. Source Program Compatibility
	Input and Output Operations
	Differences Between the C/370 V1 and V2 Compilers
	SIGFPE Exceptions
	Program Mask Manipulations
	The release() Function
	The realloc() Function
	Fetched Main Programs
	User Exits
	#line Directive
	sizeof Operator
	System Programming C Applications Built with EDCXSTRX
	The __librel() Function
	Library Messages
	Prefix of perror() and strerror() Messages
	Compiler Messages and Return Codes
	_Packed Structures and Unions
	Alternate Code Points

	Chapter 5. C/370 V1 to C/370 V2 Compiler Changes
	Source Code Incompatibilities
	Characters
	The #pragma comment Directive
	Structure Declarations
	Function Argument Compatibility
	Pointer Considerations
	Macro Changes

	Chapter 6. Other Migration Considerations
	Changes That Affect User JCL, CLISTs, and EXECs
	Return Codes and Messages
	Changes in Data Set Names
	Differences in Standard Streams
	Passing Command-Line Parameters to a Program
	SYSMSGS ddname

	Run-Time Options
	Ending the Run-Time Options List
	ISASIZE, ISAINC, STAE/SPIE, LANGUAGE, and REPORT options
	STACK Default Size
	STACK parameters
	HEAP Default Size
	HEAP Parameters

	Compile-Time Options
	DECK Compile-Time Option
	INLINE Compile-Time Option
	OPTIMIZE Compile-Time Option
	SEARCH and LSEARCH Compile-Time Option
	TEST Compile-Time Option

	Language Environment Run-Time Options
	Precedence of Language Environment over C/370 for #pragma runopts
	System Programming C Facility Applications with #pragma runopts
	Decimal Exceptions
	Migration and Coexistence Considerations

	SIGTERM, SIGINT, SIGUSR1, and SIGUSR2 Exceptions
	Running Different Versions of the Libraries under CICS
	CICS Abend Codes and Messages
	CICS Reason Codes
	Standard Stream Support under CICS
	stderr Output under CICS
	Transient Data Queue Names under CICS
	HEAP Option Used with the Interface to CICS
	COBOL Library Routines
	Passing Control to the Cross System Product
	Syntax for the CC Command
	atexit List during abort()
	Time Functions
	Direction of Compiler Messages to stderr
	Compiler Listings

	Chapter 7. Input and Output Operations Compatibility
	Opening Files
	Writing to Files
	Repositioning within Files
	Closing and Reopening ASA Files
	fldata() Return Values
	Error Handling
	Miscellaneous
	VSAM I/O Changes
	Terminal I/O Changes

	Part 3. From Pre-OS/390 Releases of C/C++ to z/OS V1R1C/C++
	Chapter 8. Application Executable Program Compatibility
	Input and Output Operations
	System Programming C Facility (SPC) Executable Programs
	Using the LINK Macro to Initiate a main()
	Inheritance of Run-Time Options with EXEC CICS LINK
	STAE/NOSPIE and SPIE/NOSTAE Mapping
	Class Library Execution Incompatibilities

	Chapter 9. Source Program Compatibility
	Input and Output Operations
	SIGFPE Exceptions
	Program Mask Manipulations
	#line Directive
	sizeof Operator
	_Packed Structures and Unions
	Alternate Code Points
	Supporting the ANSI standard
	LANGLVL(ANSI)
	Compiler Messages and Return Codes
	Collection Class Library Source Code Incompatibilities
	DSECT Utility

	Chapter 10. Other Migration Considerations
	Class Library Object Module Incompatibilities
	Removal of Database Access Class Library Utility
	Changes That Affect User JCL, CLISTs, and EXECs
	CXX Parameter in JCL Procedures
	SYSMSGS and SYSXMSGS ddnames
	Compiler Messages and Return Codes
	Changes in Data Set Names

	Decimal Exceptions
	Migration and Coexistence

	SIGTERM, SIGINT, SIGUSR1, and SIGUSR2 Exceptions
	Compile-Time Options
	OPTIMIZE Compile-Time Option
	IDL Compile-Time Option
	INLINE Compile-Time Option
	SEARCH and LSEARCH Compile-Time Option
	TEST Compile-Time Option
	HALT Compile-Time Option

	Syntax for the CC Command
	Time Functions
	Abnormal Termination Exits
	Standard Stream Support
	Direction of Compiler Messages to stderr
	Array new
	Compiler Listings

	Chapter 11. Input and Output Operations Compatibility
	Opening Files
	Writing to Files
	Repositioning within Files
	Closing and Reopening ASA Files
	fldata() Return Values
	Error Handling
	Miscellaneous
	VSAM I/O Changes
	Terminal I/O Changes

	Part 4. From OS/390 C/C++ to z/OS V1R1 C/C++
	Chapter 12. Changes Between Releases of OS/390 C/C++
	Compiler
	Memory Consideration
	Removal of Model Tool Support
	Pragma reachable and leaves
	Reentrant Variables
	Compiler Options
	ARCHITECTURE Option
	Removal of SOM-Related Options
	Removal of IDL Compile-Time Option
	OPTIMIZE Compile-Time Option
	TARGET (OS) Option

	Interprocedural Analysis
	IPA Object Module Binary Compatibility
	IPA Link Step Defaults

	Data Types
	Floating Point Type to Integer Conversion
	Long Long Data Type

	Language Environment
	Name Conflicts with Run-Time Library Functions
	Time Functions
	Direct UCS-2 and UTF-8 Converters
	Default Option for ABTERMENC Changed to ABEND
	THREADSTACK Run-Time Option

	Class Library
	Removal of SOM® Support
	Removal of Database Access Class Library Utility

	Part 5. Appendixes
	Appendix. Class Library Migration Considerations
	Notices
	Programming Interface Information
	Trademarks

	Bibliography
	z/OS
	z/OS C/C++
	z/OS Language Environment
	Assembler
	COBOL
	PL/I
	VS FORTRAN
	CICS
	DB2
	IMS/ESA
	QMF
	DFSMS

	INDEX

